Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-20T03:47:39.953Z Has data issue: false hasContentIssue false

An experimental study of unstable barotropic vortices in a rotating fluid

Published online by Cambridge University Press:  26 April 2006

R. C. Kloosterziel
Affiliation:
Institute of Meteorology and Oceanography, University of Utrecht, Princetonplein 5, 3584 CC Utrecht, The Netherlands Present affiliation: Institute for Nonlinear Science, La Jolla, CA 92093, USA.
G. J. F. van Heijst
Affiliation:
Institute of Meteorology and Oceanography, University of Utrecht, Princetonplein 5, 3584 CC Utrecht, The Netherlands

Abstract

Laboratory experiments on barotropic vortices in a rotating fluid revealed that the instability behaviour of cyclonic and anticyclonic vortices is remarkably different. Depending on its initial vorticity distribution, the cyclonic vortex has in a number of experiments been observed to be unstable to wavenumber-2 perturbations, leading to the gradual formation of a stable tripolar vortex structure. This tripole consists of an elongated cyclonic core vortex adjoined by two anticyclonic satellite vortices.

In contrast, the anticyclonic vortex shows a rather explosive instability behaviour, in the sense that it is observed to immediately split up into two dipoles. Under somewhat different circumstances the higher-order mode-3 instability is observed, in which the anticyclonic core has a triangular shape, with three smaller cyclonic satellite vortices at its sides.

A modified version of Rayleigh's instability criterion offers a qualitative explanation for this apparent difference between unstable cyclonic and anticyclonic vortices.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayly, B. J.: 1988 Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows. Phys. Fluids 31, 5664.Google Scholar
Carnevale, G. F., Kloosterziel, R. C. & Van Heijst, G. J. F.: 1990 Propagation of barotropic vortices over topography in a rotating tank. J. Fluid Mech. (submitted).Google Scholar
Carnevale, G. F., Vallis, G. K., Purini, R. & Briscolini, M., 1988 Propagation of barotropic modons over topography. Geophys. Astrophys. Fluid Dyn. 41, 45101.Google Scholar
Carton, X. J., Flierl, G. R. & Polvani, L. M., 1989 The generation of tripoles from unstable axisymmetric isolated vortex structures. Europhys. Lett. 9, 339344.Google Scholar
Carton, X. J. & Mcwilliams, J. C., 1989 Barotropic and baroclinic instabilities of axisymmetric vortices in a quasi-geostrophic model. In Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence (ed. J. C. J. Nihoul & B. M. Jamart), pp. 225244. Elsevier.
Chandrasekhar, S.: 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Cushman-Roisin, B., Heil, W. H. & Nof, D., 1985 Oscillations and rotations of elliptical warm-core vortices. J. Geophys. Res. 90, 1175611764.Google Scholar
Drazin, P. G. & Reid, W. H., 1981 Hydrodynamic Stability. Cambridge University Press.
Flierl, G. R.: 1985 Instability of vortices. Woods Hole Oceanogr. Inst., Tech. Rep. WHOI-85–36, pp. 119121.Google Scholar
Flierl, G. R.: 1988 On the instability of geostrophic vortices. J. Fluid Mech. 197, 349388.Google Scholar
Gent, P. R. & McWilliams, J. C., 1986 The instability of circular vortices. Geophys. Astrophys. Fluid Dyn. 35, 209233.Google Scholar
Ginsburg, A. I., Kostianoy, A. G., Pavlov, A. M. & Fedorov, K. N., 1987 Laboratory reproduction of mushroom-like currents (vortex dipoles) under rotation and stratification conditions. Izv. Akad. Nauk. 8SSR Atmos. Ocean. Phys. 23, 170178.Google Scholar
Griffiths, R. W. & Hopfinger, E. J., 1987 Coalescing of geostrophic vortices. J. Fluid Mech. 178, 7397.Google Scholar
Griffiths, R. W. & Linden, P. F., 1981 The stability of vortices in a rotating, stratified fluid. J. Fluid Mech. 105, 283316.Google Scholar
van Heijst, G. J. F. & Kloosterziel, R. C. 1989 Tripolar vortices in a rotating fluid. Nature 338, 569571.Google Scholar
van Heijst, G. J. F., Kloosterziel, R. C. & Williams, C. W. M. 1991 Laboratory experiments on the tripolar vortex in a rotating fluid. J. Fluid Mech. (to appear).Google Scholar
Holton, J. R.: 1979 An Introduction to Dynamic Meteorology (2nd edn). Academic.
Ikeda, M.: 1981 Instability and splitting of mesoscale rings using a two-layer quasi-geostrophic model on an f-plane. J. Phys. Oceanogr 11, 987998.Google Scholar
Kloosterziel, R. C.: 1990 Barotropic vortices in a rotating fluid. Ph.D. thesis, University of Utrecht, The Netherlands.
Kloosterziel, R. C. & van Heijst, G. J. F.: 1989 On tripolar vortices. In Mesoscale /Synoptic Coherent Structures in Geophysical Turbulence (ed. J. C. J. Nihoul & B. M. Jamart), pp. 609625. Elsevier.
Kloosterziel, R. O. & van Heijst, G. J. F.: 1990 The evolution of stable barotropic vortices in a rotating free-surface fluid. J. Fluid Mech. (submitted).Google Scholar
Legras, B., Santangelo, P. & Benzi, R., 1988 High-resolution numerical experiments for forced two-dimensional turbulence. Europhys. Lett. 5, 3742.Google Scholar
Leith, C. E.: 1984 Minimum enstrophy vortices. Phys. Fluids 27, 13881395.Google Scholar
Mcwilliams, J. C. & Gent, P. R., 1986 The evolution of sub-mesoscale, coherent vortices on the β-plane. Geophys. Astrophys. Fluid Dyn. 35, 235255.Google Scholar
Mory, M., Stern, M. E. & Griffiths, R. W., 1987 Coherent baroclinic eddies on a sloping bottom. J. Fluid Mech. 183, 4562.Google Scholar
Polvani, L. M. & Carton, X. J., 1990 The tripole: a new coherent vortex structure of incompressible two-dimensional flows. Geophys. Astrophys. Fluid Dyn. 52, 87102.Google Scholar
Rayleigh, Lord: 1916 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93, 148154.Google Scholar
Robinson, A. R. (ed.) 1983 Eddies in Marine Science. Springer.
Saunders, P. M.: 1973 The instability of a baroclinic vortex. J. Phys. Oceanogr. 3, 6165.Google Scholar
Stern, M. E.: 1987 Horizontal entrainment and detrainment in large-scale eddies. J. Phys. Oceanogr. 17, 16881695.Google Scholar
Swenson, M.: 1987 Instability of equivalent barotropic riders. J. Phys. Oceanogr. 17, 492506.Google Scholar