Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T21:22:14.375Z Has data issue: false hasContentIssue false

An experimental study of the wake of gas slugs rising in liquids

Published online by Cambridge University Press:  21 April 2006

J. B. L. M. Campos
Affiliation:
Centre de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4099 Porto Codex, Portugal
J. R. F. Guedes De Carvalho
Affiliation:
Centre de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4099 Porto Codex, Portugal

Abstract

A photographic study of the wakes of slugs rising in tubes of 19 mm and 52 mm internal diameter is presented. The dependence of the flow pattern in the wake upon the Reynolds number of the rising slug, R, is established for different slug lengths. Values of R covered in this study are in the range 25 to 1.3 × 104. For low values of R the flow pattern in the wake is laminar and axisymmetric and values of wake length and wake volume could be determined from the photographs: these values were correlated with the other variables in the system by means of dimensional analysis.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics, pp. 477–479. Cambridge University Press.
Campos, J. B. L. M. & Guedes de Carvalho, J. R. F. 1988 Mixing induced by air slugs rising in narrow columns of water. Chem. Engng Sci. (to be published).Google Scholar
Clift, R., Grace, J. R. & Sollazo, V. 1974 Continuous slug flow in vertical tubes. Trans. ASME C: J. Heat Transfer. 371–376.Google Scholar
Coutanceau, M. & Thizon, P. 1981 Wall effect on the bubble behaviour in highly viscous liquids. J. Fluid Mech. 107, 339373.Google Scholar
Davies, R. M. & Taylor, G. 1950 The mechanics of large bubbles rising through extended liquids and through liquids in tubes. Proc. R. Soc. Lond. A 200, 375392.Google Scholar
Duckler, A., Maron, D. M. & Brauner, N. 1985 A physical model for predicting the minimum stable slug length. Chem. Engng Sci. 40, 13791385.Google Scholar
Dumitrescu, D. T. 1943 Strömung an einer Luftblase im senkrechten Rohr. Z. angew. Math. Mech. 23, 139.Google Scholar
Filla, M., Donsi, G. & Crescitelli, S. 1979 Tecniche sperimentali per lo studio della scia di bolle. ICP-Riv. Indust. Chim. Vol. 10.
Maxworthy, T. 1967 A note on the existence of wakes behind large rising bubbles. J. Fluid Mech. 27, 367368.Google Scholar
Nicklin, D. J., Wilkes, J. O. & Davidson, J. F. 1962 Two-phase flow in vertical tubes. Trans. Inst. Chem. Engrs 40, 6168.Google Scholar
White, E. T. & Beardmore, R. H. 1962 The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes. Chem. Engng Sci. 17, 351361.Google Scholar