Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T05:32:25.577Z Has data issue: false hasContentIssue false

An experimental study of organized motions in the turbulent plane mixing layer

Published online by Cambridge University Press:  20 April 2006

A. K. M. F. Hussain
Affiliation:
Department of Mechanical Engineering, University of Houston, Houston, Texas 77004
K. B. M. Q. Zaman
Affiliation:
Department of Mechanical Engineering, University of Houston, Houston, Texas 77004 Current address: NASA Langley Research Center, M.S. 359, Hampton, VA 23665.

Abstract

Large-scale coherent structures in a large, single-stream plane mixing layer of air have been investigated experimentally. The unforced, initially fully turbulent mixing layer rolls up into organized structures whose average passage frequency fm at any downstream distance x from the lip depends on x. These structures are detected for the entire length of the measurement, i.e. up to x = 3 m or 5000θe. The Strouhal number Stθ (= fm θ/Ue) is observed to be a constant (≈ 0.024) at all x. θe and θ are, respectively, the exit and local momentum thicknesses of the mixing layer, and Ue is the free-stream velocity. (The entrainment velocity on the zero-speed side is found to be 0.032 Ue.) The coherent-structure properties are educed in the developing and self-preserving regions of the mixing layer using an optimized conditional-sampling method, triggered on the peaks of a local reference ũ-signal obtained from the high-speed edge of the layer. Sectional-plane contours of the properties of the structure such as coherent vorticity, Reynolds stress and production reveal that the structure formation and evolution are complete by x ≅ 500θe, beyond which the structure achieves an ‘equilibrium’ state as defined by the structure properties.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R., Chambers, A. J. & Hussain, A. K. M. F. 1980 Phys. Fluids 23, 871.
Bernal, L. 1981 Ph.D. Thesis, California Institute of Technology.
Batt, R. G. 1975 AIAA J. 13, 245.
Bradshaw, P. 1966 J. Fluid Mech. 26, 225.
Bradshaw, P., Ferris, D. H. & Johnson, R. H. 1964 J. Fluid Mech. 19, 591.
Browand, F. K. & Latigo, B. O. 1979 Phys. Fluids 22, 1011.
Browand, F. K. & Troutt, T. R. 1980 J. Fluid Mech. 97, 771.
Browand, F. K. & Weidman, P. D. 1976 J. Fluid Mech. 76, 127.
Brown, G. L. & Roshko, A. 1974 J. Fluid Mech. 64, 775.
Brown, G. L. & Thomas, A. S. W. 1977 Phys. Fluids Suppl. 20, S243.
Cantwell, B., Coles, D. & Dimotakis, P. E. 1978 J. Fluid Mech. 87, 641.
Cimbala, J. M. 1984 Ph.D. Thesis, California Institute of Technology.
Coles, D. E. 1962 Rand Corp. Rep. R-403-PR.
Coles, D. 1983 In Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi), p. 397. North-Holland.
Crow, S. C. & Champagne, F. H. 1971 J. Fluid Mech. 48, 547.
Dimotakis, P. E. & Brown, G. L. 1976 J. Fluid Mech. 78, 535.
Fiedler, H. E., Dziomba, B., Mensing, P. & Rösgen, T. 1980 In Role of Coherent Structures in Modelling Turbulence and Mixing (ed. J. Jimenez), Lecture Notes in Physics, vol 136, p. 219. Springer.
Foss, J. F. 1977 Turb. Shear Flows, Penn. State Univ. 11.33.
Grant, H. L. 1958 J. Fluid Mech. 4, 149.
Head, M. R. & Bandyopadhyay, P. 1981 J. Fluid Mech. 107, 297.
Hussain, A. K. M. F. 1980 In Role of Coherent Structures in Modelling Turbulence and Mixing (ed. J. Jimenez), Lecture Notes in Physics, vol. 136, p. 252. Springer.
Hussain, A. K. M. F. 1980 In Lecture Notes in Physics (ed. J. Jimenez), vol. 136, p. 252.
Hussain, A. K. M. F. 1983 In Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi), p. 453. North-Holland.
Hussain, A. K. M. F. & Clark, A. R. 1981 J. Fluid Mech. 104, 263.
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1980 J. Fluid Mech. 101, 493.
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1981a J. Fluid Mech. 110, 39.
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1981b Bull. Am. Phys. Soc. 26, 1251.
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1982 Rep. FR-14, Aerodyn. & Turbulence Lab., Univ. Houston.
Hussain, A. K. M. F. & Zedan, M. F. 1978 Phys. Fluids 21, 1100.
Keffer, J. F. 1965 J. Fluid Mech. 22, 135.
Moallemi, M. K. & Goldschmidt, V. W. 1981 Purdue Univ. Rep. HL 81–82.
Mumford, J. C. 1982 J. Fluid Mech (to appear).
Neu, J. C. 1984 J. Fluid Mech. 143, 253.
Oster, D. & Wygnanski, I. 1982 J. Fluid Mech. 123, 91.
Oster, D., Wygnanski, I., Dziomba, B. & Fiedler, H. 1977 In Structure and Mechanisms of Turbulence I (ed. H. Fiedler). Lecture Notes in Physics, vol. 75, p. 48. Springer.
Pui, N. K. & Gartshore, I. S. 1979 J. Fluid Mech. 91, 111.
Purtell, L. P., Klebanoff, P. S. & Buckley, F. T. 1981 Phys. Fluids 24, 802.
Roshko, A. 1980 In Role of Coherent Structures in Modelling Turbulence and Mixing (ed. J. Jimenez), Lecture Notes in Physics, vol. 136, p. 208. Springer.
Smith, C. R. 1983 Turbulence Symp., Rolla, vol. 8, p. 299.
Townsend, A. A. 1979 J. Fluid Mech. 95, 515.
Tso, J. 1983 Ph.D. Thesis, Johns Hopkins University.
Wygnanski, I., Oster, D., Fiedler, H. & Dziomba, B. 1979 J. Fluid Mech. 93, 325.
Wygnanski, I., Sokolov, M. & Friedman, D. 1976 J. Fluid Mech. 78, 785.
Yule, A. J. 1978 J. Fluid Mech. 89, 413.
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1981 J. Fluid Mech. 112, 379.
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1984 J. Fluid Mech. 138, 325.