Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T17:02:38.049Z Has data issue: false hasContentIssue false

An experimental investigation of Taylor vortex flow between conical cylinders

Published online by Cambridge University Press:  26 April 2006

Manfred Wimmer
Affiliation:
Institut für Strömungslehre und Strömungsmaschinen, Universität (TH) Karisruhe, Germany

Abstract

Viscous flows and instabilities between conical cylinders are described which result from rotating an inner cone while the outer one is at rest. Both cones have the same apex angle resulting in a constant width of the gap between the bodies. The laminar basic flow is tree-dimensional. Owing to different centrifugal forces on the cone's surface one obtains regions of sub- and supercritical flows in the annulus. The Taylor vortices generated can be steady or unsteady, so that toroidal or helical vortices travel through the closed system, depending on different initial and boundary conditions. Furthermore, combinations of steady toroidal and unsteady helical vortices are possible. The influence of the governing parameters, like acceleration rate, gap width, end plates and so on is discussed. A comparison with available calculations is made.

Type
Research Article
Copyright
© 1995 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abboud, M. 1988 Ein Beitrag zur theoretischen Untersuchung von Taylor Wirbeln im Spalt zwischen Zylinder/Kegel Konfigurationen. Z. Angew. Math. Mech. 68, 275277.Google Scholar
Andereck, C. D., Liu, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.Google Scholar
Bühler, K., Schröder, E. & Wimmer, M. 1994 Dynamics of flow instabilities in thermal and hydrodynamic systems. Acta Mechanica Suppl. 4, 19.Google Scholar
Burkhalter, J. E. & Koschmieder, E. L. 1973 Steady supercritical Taylor vortex flow. J. Fluid Mech. 58, 547560.Google Scholar
Burkhalter, J. E. & Koschmieder, E. L. 1974 Steady supercritical Taylor vortices after sudden starts. Phys. Fluids 17, 19291935.Google Scholar
Coles, D. 1965 Transition in circular Couette flow, J. Fluid Mech. 21, 385425.Google Scholar
Donnelly, R. J. 1992 Evolution of instrumentation for Taylor—Couette flow. In Ordered and Turbulent Patterns in Taylor—Couette Flow (ed. C. D. Andereck & F. Hayot), pp. 127. Plenum.
Kirchgássner, K. 1961 Die Stabilität der Strömung zwischen rotierenden Zylindern gegenüber Taylor—Wirbeln für beliebige Spaltweiten. Z. Angew. Math. Phys. 12, 1430.Google Scholar
Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 289343.Google Scholar
Wimmer, M. 1976 Experiments on a viscous fluid flow between concentric rotating spheres. J. Fluid Mech. 78, 317335.Google Scholar
Wimmer, M. 1983 Die viskose Strömung zwischen rotierenden Kegelflächen. Z. Angew. Math. Mech. 63, 299301.Google Scholar
Wimmer, M. 1988 Viscous flows and instabilities near rotating bodies. Prog. Aerospace Sci. 25, 43103.Google Scholar
Wimmer, M. 1992 Wirbelbehaftete Strömung im Spalt zwischen Zylinder—Kegel Kombinationen. Rep. 45, pp. 5983. Strömungsmechanik und Strömungsmaschinen, Universität Karlsruhe.
Wimmer, M. 1994 Strömungen im konstanten Spalt zwischen rotierenden Kegelflächen. Rep. 47, pp. 13742. Strömungsmechanik und Strömungsmaschinen, Universität Karlsruhe.