Published online by Cambridge University Press: 29 March 2006
Experiments were made on a pulsating water flow at a mean flow Reynolds number of 3770 in a cylindrical tube of diameter 3·81 cm. Pulsations were produced by a piston oscillating in simple harmonic motion with a period of 12 s. Turbulence was made visible by means of a sheet of dye produced by electrolysis from a fine wire stretched across a diameter. The sheet of dye is contorted by the turbulent eddies, and ciné-photography was used to find the velocity of convection which was shown to be the flow speed except in certain circumstances which are discussed. By subtracting the mean flow velocity profile the profile of the component of the motion oscillating at the imposed frequency was determined.
The Reynolds number of these experiments lies in the turbulent transition range, so that large effects of laminarization are observed. In the turbulent phase, the velocity profile was found to possess a central plateau as does the laminar oscillating profile. The level and radial extent of this were little different from the laminar ones. Near to the wall, the turbulent oscillating profile is well represented by the mean velocity power law relationship, u/U ∝ (y/a)1/n. In the laminarized phase, the turbulent intensity is considerably reduced at this Reynolds number. The velocity profile for the whole flow (mean plus oscillating) relaxes towards the laminar profile. Laminarization contributes appreciably to the oscillating component.
Extrapolation of the results to higher Reynolds numbers and different frequencies of oscillation is suggested.