Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T17:00:45.570Z Has data issue: false hasContentIssue false

An experimental and numerical study of periodic flow in a curved tube

Published online by Cambridge University Press:  19 April 2006

J. Y. Lin
Affiliation:
Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
J. M. Tarbell
Affiliation:
Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802

Abstract

Fully developed periodic flow (with non-zero mean) of a Newtonian fluid in a rigid curved tube has been investigated both numerically and experimentally. Results are reported for the mean friction factor, the amplitude ratio and phase angle between flow rate and pressure drop, the axial velocity profile, and the wall shear stress distribution. The numerical results (obtained by a finite difference method) are restricted to rather slow flows (mean Dean number $\tilde{Dn} < 100 $), while the experimental results (extracted from instantaneous flow rate-pressure drop measurements) extend up to $\tilde{Dn} \sim 300 $. A ‘resonant’ interaction between the axial and secondary flows at intermediate frequencies appears to be a characteristic feature of periodic flow in a curved tube.

Type
Research Article
Copyright
© 1980 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atabek, A. B. & Chang, C. C. 1961 Z. angew. Math. Phys. 12, 185.
Bertelsen, A. F. 1975 J. Fluid Mech. 70, 519.
Caro, C. G., Fitz-Gerald, J. M. & Schroter, R. C. 1971 Proc. Roy. Soc. B 177, 109.
Chandran, K. B., Swanson, W. M., Ghista, D. N. & Vayo, H. W. 1974 Ann. Biomed. Engng 2, 392.
Collins, W. M. & Dennis, S. C. R. 1975 Quart. J. Mech. Appl. Math. 28 (2), 133.
Dean, W. R. 1927 Phil. Mag. 4, 208.
Dravid, A. N., Smith, K. A., Merrill, E. W. & Brian, P. L. T. 1971 A.I.Ch.E.J. 17 (5), 1114.
Fry, D. L. 1969 Circ. Res. 24, 93.
Kalb, C. E. & Seader, J. D. 1974 A.I.Ch.E. J. 20 (2), 340.
Lin, J. Y. 1979 Periodic Flow in a Curved Tube. Ph.D. thesis, Dept. of Chem. Engng, Pennsylvania State University.
Lyne, W. H. 1970 J. Fluid Mech. 45, 13.
Mishra, P. & Gupta, S. N. 1979 Ind. Engng Chem. Process Des. Dev. 18, 130.
Mori, Y. & Nakayama, W. 1965 Int. J. Heat Mass Transfer 8, 67.
Nerem, R. M. & Cornhill, J. F. 1978 The Role of Fluid Mechanics in Atherogenesis. Proc. from a Specialists Meeting, Columbus, Ohio.
Patel, R. D., McFeeley, J. J. & Jolls, K. R. 1975 A.I.Ch.E. J. 21, 259.
Sexl, Th. 1930 Z. Phys. 61, 349.
Smith, F. T. 1975 J. Fluid Mech. 71, 15.
Smith, F. T. 1976 Proc. Roy. Soc. A 347, 345.
Tarbell, J. M. & Samuels, M. R. 1973 Chem. Engng J. 5, 117.
Uchida, S. 1956 Z. angew. Math. Phys. 7, 403.
Womersley, J. R. 1955 J. Physiol. 127, 553.
Yao, L. S. & Berger, S. A. 1975 J. Fluid Mech. 67, 177.
Zalosh, R. G. & Nelson, W. G. 1973 J. Fluid Mech. 59, 693.