Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T22:09:36.689Z Has data issue: false hasContentIssue false

An exact Lagrangian-mean wave activity for finite-amplitude disturbances to barotropic flow on a sphere

Published online by Cambridge University Press:  12 January 2012

Abraham Solomon*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, IL 60637, USA
N. Nakamura
Affiliation:
Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Avenue, Chicago, IL 60637, USA
*
Email address for correspondence: [email protected]

Abstract

The finite-amplitude Rossby wave activity introduced recently by Nakamura and co-workers measures disturbances in terms of the areal displacement of potential vorticity (PV) from zonal symmetry and possesses exact Eliassen–Palm and non-acceleration theorems. This article investigates both theoretically and numerically how this wave activity, denoted , relates to previously defined quantities such as the generalized Lagrangian-mean (GLM) pseudomomentum density and the impulse-Casimir (IC) wave activity in the context of barotropic flow on a sphere. It is shown that under the barotropic constraint both the new and GLM formalisms derive the non-acceleration theorem from the conservation of Kelvin’s circulation, but the two differ in the way the circulation is partitioned into a mean flow and wave activity/pseudomomentum density. The new wave activity differs from the (negative of) GLM pseudomomentum density by the Stokes correction to angular momentum density, which is not negligible even in the small-amplitude limit. In contrast, converges to the IC wave activity and the familiar linear pseudomomentum density in the conservative small-amplitude limit, provided that their reference states are identical. Both the GLM pseudomomentum density and the zonal-mean IC wave activity may be cast in a flux conservation form in equivalent latitude, which may then be related to an exact Eliassen–Palm theorem through a gauge transformation. However, of the three wave activity forms, only satisfies an exact non-acceleration theorem for the zonal-mean zonal wind . A simple jet forcing experiment is used to examine the quantitative differences among these diagnostics. In this experiment, and the IC wave activity behave similarly in the domain average; however, they differ substantially in the local profiles, the former being more closely related to the flow modification. Despite their close conceptual relationship, the GLM pseudomomentum fails to capture the meridional structure of because the Stokes correction term dominates the former. This demonstrates various advantages of as a diagnostic of eddy–mean flow interaction.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: The University of Chicago, 5734 S. Ellis Avenue, Chicago, IL 60637, USA

References

1. Allen, D. R. & Nakamura, N. 2003 Tracer equivalent latitude: a diagnostic tool for isentropic transport studies. J. Atmos. Sci. 60 (2), 287304.2.0.CO;2>CrossRefGoogle Scholar
2. Andrews, D. G., Holton, J. R. & Leovy, C. B. 1987 Middle Atmosphere Dynamics. Academic.Google Scholar
3. Andrews, D. G. & McIntyre, M. E. 1976 Planetary waves in horizontal and vertical shear: the generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci. 33 (11), 20312048.2.0.CO;2>CrossRefGoogle Scholar
4. Andrews, D. G. & McIntyre, M. E. 1978a An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89 (4), 609646.CrossRefGoogle Scholar
5. Andrews, D. G. & McIntyre, M. E. 1978b Generalized Eliassen–Palm and Charney-Drazin theorems for waves in axismmetric mean flows in compressible atmospheres. J. Atmos. Sci. 35 (2), 175185.Google Scholar
6. Andrews, D. G. & McIntyre, M. E. 1978c On wave-action and its relatives. J. Fluid Mech. 89 (04), 647664.CrossRefGoogle Scholar
7. Baldwin, M. P. & Dunkerton, T. J. 1998 Biennial, quasi-biennial, and decadal oscillations of potential vorticity in the northern stratosphere. J. Geophys. Res. 103 (D4), 39193928.CrossRefGoogle Scholar
8. Boer, G. J. & Shepherd, T. G. 1983 Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci. 40 (1), 164184.2.0.CO;2>CrossRefGoogle Scholar
9. Brunet, G. & Haynes, P. H. 1996 Low-latitude reflection of Rossby wave trains. J. Atmos. Sci. 53 (3), 482496.2.0.CO;2>CrossRefGoogle Scholar
10. Bühler, O. 2009 Wave and Mean Flows. Cambridge University Press.CrossRefGoogle Scholar
11. Butchart, N. & Remsberg, E. E. 1986 The area of the stratospheric polar vortex as a diagnostic for tracer transport on an isentropic surface. J. Atmos. Sci. 43 (13), 13191339.2.0.CO;2>CrossRefGoogle Scholar
12. Charney, J. G. 1959 Hydrodynamics of the atmosphere and numerical weather prediction-a synthesis. Proc. Acad. Nat. Sci. 45 (12), 16501655.CrossRefGoogle Scholar
13. Charney, J. G. & Drazin, P. G. 1961 Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66, 83109.CrossRefGoogle Scholar
14. Dritschel, D. G. & McIntyre, M. E. 2008 Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855874.CrossRefGoogle Scholar
15. Durran, D. R. 2010 Numerical Methods for Fluid Dynamics. In Texts in Applied Mathematics, vol. 32. Springer.Google Scholar
16. Edmon, H. J., Hoskins, B. J. & McIntyre, M. E. 1980 Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci. 37 (12), 26002616.2.0.CO;2>CrossRefGoogle Scholar
17. Eliassen, A. & Palm, E. 1961 On the transfer of energy in stationary mountain waves. Geophys. Publ. 22 (3), 123.Google Scholar
18. Harvey, V. L., Randall, C. E. & Hitchman, M. H. 2009 Breakdown of potential vorticity-based equivalent latitude as a vortex-centred coordinate in the polar winter mesosphere. J. Geophys. Res. 114, D22105.Google Scholar
19. Haynes, P. H. 1988 Forced, dissipative generalizations of finite-amplitude wave-activity conservation relations for zonal and non-zonal basic flows. J. Atmos. Sci. 45 (16), 23522362.2.0.CO;2>CrossRefGoogle Scholar
20. Held, I. M. 1985 Pseudomomentum and the orthogonality of modes in shear flows. J. Atmos. Sci. 42, 22802288.2.0.CO;2>CrossRefGoogle Scholar
21. Held, I. M. & Phillips, P. J. 1987 Linear and nonlinear barotropic decay on the sphere. J. Atmos. Sci. 44 (1), 200207.2.0.CO;2>CrossRefGoogle Scholar
22. Killworth, P. D. & McIntyre, M. E. 1985 Do Rossby-wave critical layers absorb, reflect, or over-reflect?. J. Fluid Mech. 161 (1), 449492.CrossRefGoogle Scholar
23. Kuo, H.-L. 1949 Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteor. 6, 105122.2.0.CO;2>CrossRefGoogle Scholar
24. Kuo, H.-L. 1951 Vorticity transfer as related to the development of the general circulation. J. Meteorol. 8 (5), 307315.2.0.CO;2>CrossRefGoogle Scholar
25. Liberato, M. L. R., Castanheira, J. M., de la Torre, L., DaCamara, C. C. & Gimeno, L. 2007 Wave energy associated with the variability of the stratospheric polar vortex. J. Atmos. Sci. 64 (7), 26832694.CrossRefGoogle Scholar
26. Magnusdottir, G. & Haynes, P. H. 1996 Wave activity diagnostics applied to baroclinic wave life cycles. J. Atmos. Sci. 53 (16), 23172353.2.0.CO;2>CrossRefGoogle Scholar
27. Magnusdottir, G. & Haynes, P. H. 1999 Reflection of planetary waves in three-dimensional tropospheric flows. J. Atmos. Sci. 56 (4), 652670.2.0.CO;2>CrossRefGoogle Scholar
28. McEwan, A. D., Thompson, R. O. R. Y. & Plumb, R. A. 1980 Mean flows driven by weak eddies in rotating systems. J. Fluid Mech. 99 (3), 655672.CrossRefGoogle Scholar
29. McIntyre, M. E. 1980 Towards a Lagrangian-mean description of stratospheric circulations and chemical transports. Phil. Trans. R. Soc. Lond. A 296 (1418), 129148.Google Scholar
30. McIntyre, M. E. 1982 How well do we understand the dynamics of stratospheric warmings?. J. Meteorol. Soc. Japan. 60, 3765.CrossRefGoogle Scholar
31. McIntyre, M. E. & Shepherd, T. G. 1987 An exact local conservation theorem for finite-amplitude disturbances to non-parallel shear flows, with remarks on Hamiltonian structure and on Arnol’d’s stability theorems. J. Fluid Mech. 181, 527565.CrossRefGoogle Scholar
32. Nakamura, N. 1995 Modified Lagrangian-mean diagnostics of the stratospheric polar vortices. Part I. Formulation and analysis of GFDL SKYHI GCM. J. Atmos. Sci. 52 (11), 20962108.2.0.CO;2>CrossRefGoogle Scholar
33. Nakamura, N. 1996 Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J. Atmos. Sci. 53 (11), 15241537.2.0.CO;2>CrossRefGoogle Scholar
34. Nakamura, N. & Solomon, A. L. 2010 Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part I. Quasigeostrophic theory and analysis. J. Atmos. Sci. 67 (12), 39673983.CrossRefGoogle Scholar
35. Nakamura, N. & Solomon, A. L. 2011 Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part II. Analysis in the isentropic coordinate. J. Atmos. Sci. 68 (11), 27832799.CrossRefGoogle Scholar
36. Nakamura, N. & Zhu, D. 2010a Finite-amplitude wave activity and diffusive flux of potential vorticity in eddy-mean flow interaction. J. Atmos. Sci. 67 (9), 27012716.CrossRefGoogle Scholar
37. Nakamura, N. & Zhu, D. 2010b Formation of jets through mixing and forcing of potential vorticity: analysis and parameterization of beta-plane turbulence. J. Atmos. Sci. 67 (9), 27172733.CrossRefGoogle Scholar
38. Rayleigh, B. J. W. S. 1896 On the Theory of Sound, vol. 2. pp. 236254. Dover.Google Scholar
39. Reynolds, O. 1895 On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. R. Soc. Lond. A 186, 123164.Google Scholar
40. Scinocca, J. F. & Peltier, W. R. 1994 The instability of Long’s stationary solution and the evolution toward severe downslope windstorm flow. Part II. The application of finite-amplitude local wave-activity flow diagnostics. J. Atmos. Sci. 51 (4), 623653.2.0.CO;2>CrossRefGoogle Scholar
41. Shepherd, T. G. 1983 Mean motions induced by baroclinic instability in a jet. Geophys. Astrophys. Fluid Dyn. 27, 3572.CrossRefGoogle Scholar
42. Shepherd, T. G. 1988 Rigorous bounds on the nonlinear saturation of instabilities to parallel shear flows. J. Fluid Mech. 196, 291322.CrossRefGoogle Scholar
43. Shepherd, T. G. 1989 Nonlinear saturation of baroclinic instability. Part II. Continuously stratified fluid. J. Atmos. Sci. 46 (7), 888907.2.0.CO;2>CrossRefGoogle Scholar
44. Strong, C. & Magnusdottir, G. 2008 How rossby wave breaking over the pacific forces the north atlantic oscillation. Geophys. Res. Lett. 35, L10706.CrossRefGoogle Scholar
45. Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar