Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-21T16:57:23.635Z Has data issue: false hasContentIssue false

An enthalpy-based hybrid lattice-Boltzmann method for modelling solid–liquid phase transition in the presence of convective transport

Published online by Cambridge University Press:  14 November 2007

SUMAN CHAKRABORTY
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur-721302, India, [email protected]
DIPANKAR CHATTERJEE
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur-721302, India, [email protected]

Abstract

An extended lattice Boltzmann model is developed for simulating the convection–diffusion phenomena associated with solid–liquid phase transition processes. Macroscopic hydrodynamic variables are obtained through the solution of an evolution equation of a single-particle density distribution function, whereas, the macroscopic temperature field is obtained by solving auxiliary scalar transport equations. The novelty of the present methodology lies in the formulation of an enthalpy-based approach for phase-change modelling within a lattice-Boltzmann framework, in a thermodynamically consistent manner. Thermofluidic aspects of phase transition are handled by means of a modified enthalpy–porosity formulation, in conjunction with an appropriate enthalpy-updating closure scheme. Lattice-Boltzmann simulations of melting of pure gallium in a rectangular enclosure, Rayleigh–Bénard convection in the presence of directional solidification in a top-cooled cavity, and crystal growth during solidification of an undercooled melt agree well with the numerical and experimental results available in the literature, and provide substantial evidence regarding the upscaled computational economy provided by the present methodology.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Askar, H. G. 1987 The front tracking scheme for the one-dimensional freezing problem. Intl J. Numer.Meth. Engng 24, 859869.CrossRefGoogle Scholar
Barrios, G., Rechtman, R., Rojas, J. & Tovar, R. 2005 The lattice Boltzmann equation for natural convection in a two-dimensional cavity with a partially heated wall. J. Fluid Mech. 522, 91100.CrossRefGoogle Scholar
Bartoloni, A., Battista, C., Cabasino, S. et al. 1993 LBE simulations of Rayleigh–Bénard convection on the APE100 parallel processor. Intl J. Mod. Phys. C 4, 9931006.CrossRefGoogle Scholar
Beckermann, C., Diepers, H.-J., Steinbach, I., Karma, A. & Tong, X. 1999 Modeling melt convection in phase-field simulations of solidification. J. Comput. Phys. 154, 468496.CrossRefGoogle Scholar
Bennon, W. D. & Incropera, F. P. 1987 A continuum model for momentum, heat and species transport in binary solid–liquid phase-change systems. I. Model formulation. Intl J. Heat Mass Transfer 30, 21612170.CrossRefGoogle Scholar
Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in charged and neutral one-component system. Phys. Rev. 94, 511525.CrossRefGoogle Scholar
Brent, A. D., Voller, V. R. & Reid, K. 1988 Enthalpy-porosity technique for modeling convection–diffusion phase change: application to the melting of a pure metal. Numer. Heat Transfer 13, 297318.CrossRefGoogle Scholar
Chakraborty, S. & Dutta, P. 2001 A generalized formulation for evaluation of latent heat functions in enthalpy-based macroscopic models for convection–diffusion phase change process. Metall. Mat. Trans. B 32, 562564.CrossRefGoogle Scholar
Chatterjee, D. & Chakraborty, S. 2005 An enthalpy based lattice Boltzmann model for diffusion dominated solid–liquid phase transformation. Phys. Lett. A 341, 320330.CrossRefGoogle Scholar
Chatterjee, D. & Chakraborty, S. 2006 A hybrid lattice Boltzmann model for solid–liquid phase transition in presence of fluid flow. Phys. Lett. A 351, 359367.CrossRefGoogle Scholar
Chatterjee, D. & Chakraborty, S. 2007 An enthalpy-source based lattice Boltzmann model for conduction dominated phase change of pure substances. Int. J. Therm. Sci. (accepted).Google Scholar
Chen, H., Chen, S. & Matthaeus, W. H. 1992 Recovery of the Navier–Stokes equations through a lattice gas Boltzmann equation method. Phys. Rev. A 45, R53395342.CrossRefGoogle Scholar
Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329364.CrossRefGoogle Scholar
Chen, S., Chen, H., Martnez, D. & Matthaeus, W. 1991 Lattice Boltzmann model for simulation of magnetohydrodynamics. Phys. Rev. Lett. 67, 37763779.CrossRefGoogle ScholarPubMed
Chen, Y., Ohashi, H. & Akiyama, M. 1995 Heat transfer in lattice BGK modeled fluid. J. Stat. Phys. 81, 7185.CrossRefGoogle Scholar
Dantzig, J. A. 1989 Modeling liquid–solid phase changes with melt convection. Intl J. Numer. Meth. Engng 28, 17691785.CrossRefGoogle Scholar
De Fabritiis, G., Mancini, A., Mansutti, D. & Succi, S. 1998 Mesoscopic models of liquid/solid phase transitions. Intl J. Mod. Phys. C 9, 14051415.CrossRefGoogle Scholar
Frisch, U., Hasslacher, B. & Pomeau, Y. 1986 Lattice-gas automata for the Navier–Stokes equation. Phys. Rev. Lett. 56, 15051508.CrossRefGoogle ScholarPubMed
Gau, C. & Viskanta, R. 1986 Melting and solidification of a pure metal on a vertical wall. J. Heat Transfer 108, 174181.CrossRefGoogle Scholar
Guo, Z., Zheng, C. & Shi, B. 2002 Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308-1046308-6.Google ScholarPubMed
Harrowell, P. R. & Oxtoby, D. W. 1987 On the interaction between order and a moving interface: dynamical disordering and anisotropic growth rates. J. Chem. Phys. 86, 29322942.CrossRefGoogle Scholar
He, X., Luo, L.-S. & Dembo, M. 1997 Some progress in lattice Boltzmann method: enhancement of Reynolds number in simulations. Physica A 239, 276285.CrossRefGoogle Scholar
Jeong, J. H., Goldenfeld, N. & Dantzig, J. A. 2001 Phase field model for three-dimensional dendritic growth with fluid flow. Phys. Rev. E 64, 041602 (114).Google ScholarPubMed
Kendon, V. M., Cates, M. E., Pagonabarraga, I., Desplat, J.-C. & Bladon, P. 2001 Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice Boltzmann study. J. Fluid Mech. 440, 147203.CrossRefGoogle Scholar
Khachaturyan, A. G. 1996 Long-range order parameter in field model of solidification. Phil. Mag. A 74, 314.CrossRefGoogle Scholar
Kim, Y-T., Provatas, N., Goldenfeld, N. & Dantzig, J. A. 1999 Universal dynamics of phase-field models for dendritic growth. Phys. Rev. E 59, R2546R2549.Google Scholar
Kumar, P., Chakraborty, S., Srinivasan, K. & Dutta, P. 2002 Rayleigh–Bénard convection during solidification of a eutectic solution cooled from the top. Metall. Trans. B 33, 605612.CrossRefGoogle Scholar
Lallemand, P. & Luo, L.-S. 2003 Hybrid finite-difference thermal Lattice Boltzmann equation. Intl J. Mod. Phys. B 17, 4147.CrossRefGoogle Scholar
Lan, C. W., Hsu, C. M., Liu, C. C. & Chang, Y. C. 2002 Adaptive phase field simulation of dendritic growth in a forced flow at various supercoolings. Phys. Rev. E 65, 061601(111).Google Scholar
Martys, N. S., Shan, X. & Chen, H. 1998 Evaluation of the external force term in the discrete Boltzmann equation. Phys. Rev. E 58, 68556857.Google Scholar
Melchionna, S. & Succi, S. 2004 Electrorheology in nanopores via lattice Boltzmann simulation. J. Chem. Phys. 120, 44924497.CrossRefGoogle ScholarPubMed
Mezrhab, A., Bouzidi, M. & Lallemand, P. 2004 Hybrid lattice-Boltzmann finite-difference simulation of convective flows. Computers Fluids 33, 623641.CrossRefGoogle Scholar
Mikheev, L. V. & Chernov, A. A. 1991 Mobility of a diffuse simple crystal melt interface. J. Cryst. Growth. 112, 591596.CrossRefGoogle Scholar
Miller, W. 2001 The lattice Boltzmann method: a new tool for numerical simulation of the interaction of growth kinetics and melt flow. J. Cryst. Growth 230, 263269.CrossRefGoogle Scholar
Miller, W. & Schroder, W. 2001 Numerical modeling at the IKZ: an overview and outlook. J. Cryst. Growth 230, 19.CrossRefGoogle Scholar
Miller, W. & Succi, S. 2002 A Lattice Boltzmann model for anisotropic crystal growth from melt. J. Stat. Phys. 107, 173186.CrossRefGoogle Scholar
Miller, W., Succi, S. & Manutti, D. 2001 Lattice Boltzmann model for anisotropic liquid–solid phase transition. Phys. Rev. Lett. 86, 35783581.CrossRefGoogle ScholarPubMed
Miller, W., Rasin, I. & Pimentel, F. 2004 Growth kinetics and melt convection. J. Cryst. Growth 266, 283288.CrossRefGoogle Scholar
Pal, D., Bhattacharya, J., Dutta, P. & Chakraborty, S. 2006 An enthalpy model for simulation of dendritic growth. Numer. Heat Transfer B 50, 5978CrossRefGoogle Scholar
Palle, N. & Dantzig, J. A. 1996 An adaptive mesh refinement scheme for solidification problems. Mettal. Trans. 27A, 707717.CrossRefGoogle Scholar
Patankar, S. V. 1980 Numerical Heat Transfer and Fluid Flow. Hemisphere/McGraw-Hill.Google Scholar
Qian, Y., D'Humieres, D. & Lallemand, P. 1992 Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479484.CrossRefGoogle Scholar
Rubinsky, B. & Cravahlo, E. G. 1981 A finite element method for the solution of one-dimensional phase change problems. Intl J. Heat Mass Transfer 24, 19871989.CrossRefGoogle Scholar
Sankaranarayanan, K., Shan, X., Kevrekidis, I. G. & Sundaresan, S. 2002 Analysis of drag and virtual mass forces in bubbly suspensions using an implicit formulation of the lattice Boltzmann method. J. Fluid Mech. 452, 6196.CrossRefGoogle Scholar
Sasikumar, R. & Sreenivasan, R. 1994 Two-dimensional simulation of dendrite morphology. Acta Metall. Mater. 42, 23812386.CrossRefGoogle Scholar
Shan, X. 1997 Simulation of Rayleigh–Bénard convection using a Lattice Boltzmann model. Phys. Rev. E 55, 27802788.Google Scholar
Shan, X. & Chen, H. 1993 Lattice Boltzmann model for simulating flows with multiple phase and components. Phys. Rev. E 47, 18151819.Google ScholarPubMed
Shan, X. & He, X. 1998 Discretization of the velocity space in the solution of the Boltzmann equation. Phys. Rev. Lett. 80, 6568.CrossRefGoogle Scholar
Shin, Y. H. & Hong, C. P. 2002 Modeling of dendritic growth with convection using a modified cellular automaton model with a diffuse interface. ISIJ Intl 42, 359367.CrossRefGoogle Scholar
Succi, S. 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press.CrossRefGoogle Scholar
Tong, X., Beckermann, C., Karma, A. & Li, Q. 2001 Phase-field simulations of dendritic crystal growth in a forced flow. Phys. Rev. E 63, 061601-(116).Google Scholar
Voller, V. & Cross, M. 1981 Accurate solutions of moving boundary problems using the enthalpy method. Intl J. Heat Mass Transfer 24, 545556.CrossRefGoogle Scholar
Voller, V. & Cross, M. 1983 An explicit numerical method to track a moving phase change front. Intl J. Heat Mass Transfer 26, 147150.CrossRefGoogle Scholar
Voller, V. R. & Prakash, C. 1987 A fixed grid numerical modeling methodology for convection–diffusion mushy region phase change problems. Intl J. Heat Mass Transfer 30, 17091719.CrossRefGoogle Scholar
Voller, V., Swaminathan, C. R. & Thomas, B. G. 1990 Fixed grid techniques for phase change problems: a review. Intl J. Numer. Methods Engng 30, 875898.CrossRefGoogle Scholar
Weaver, J. A. & Viskanta, R. 1986 Freezing of liquid saturated porous media. Intl J. Heat Mass Transfer 33, 27212734.Google Scholar
Zhang, R. & Chen, H. 2003 Lattice Boltzmann method for simulations of liquid–vapor thermal flows. Phys. Rev. E 67, 066711(16).Google ScholarPubMed