Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T11:34:21.827Z Has data issue: false hasContentIssue false

An adjoint-based approach for finding invariant solutions of Navier–Stokes equations

Published online by Cambridge University Press:  14 April 2016

M. Farazmand*
Affiliation:
Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
*
Email address for correspondence: [email protected]

Abstract

We consider the incompressible Navier–Stokes equations with periodic boundary conditions and time-independent forcing. For this type of flow, we derive adjoint equations whose trajectories converge asymptotically to the equilibrium and travelling-wave solutions of the Navier–Stokes equations. Using the adjoint equations, arbitrary initial conditions evolve to the vicinity of a (relative) equilibrium at which point a few Newton-type iterations yield the desired (relative) equilibrium solution. We apply this adjoint-based method to a chaotic two-dimensional Kolmogorov flow. A convergence rate of $100\,\%$ is observed, leading to the discovery of $21$ new steady-state and travelling-wave solutions at Reynolds number $Re=40$. Some of the new invariant solutions have spatially localized structures that were previously believed to exist only on domains with large aspect ratios. We show that one of the newly found steady-state solutions underpins the temporal intermittencies, i.e. high energy dissipation episodes of the flow. More precisely, it is shown that each intermittent episode of a generic turbulent trajectory corresponds to its close passage to this equilibrium solution.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrose, D. M. & Wilkening, J. 2010a Computation of symmetric, time-periodic solutions of the vortex sheet with surface tension. Proc. Natl Acad. Sci. USA 107 (8), 33613366.Google Scholar
Ambrose, D. M. & Wilkening, J. 2010b Computation of time-periodic solutions of the Benjamin–Ono equation. J. Nonlinear Sci. 20 (3), 277308.Google Scholar
Auerbach, D., Cvitanović, P., Eckmann, J.-P., Gunaratne, G. & Procaccia, I. 1987 Exploring chaotic motion through periodic orbits. Phys. Rev. Lett. 58, 23.Google Scholar
Ayala, D. & Protas, B. 2014 Maximum palinstrophy growth in 2D incompressible flows. J. Fluid Mech. 742, 340367.Google Scholar
Batchelor, G. K. & Townsend, A. A. 1949 The nature of turbulent motion at large wave-numbers. Proc. R. Soc. Lond. A 199, 238255.Google Scholar
Boyd, S. & Vandenberghe, L. 2004 Convex Optimization. Cambridge University Press.Google Scholar
Budanur, N. B., Cvitanović, P., Davidchack, R. L. & Siminos, E. 2015 Reduction of SO(2) symmetry for spatially extended dynamical systems. Phys. Rev. Lett. 114, 084102.Google Scholar
Cartan, E. 1935 La Méthode du Repère Mobile, la Théorie des Groupes Continues et les Espaces Généralisés. (Exposés de Géométrie) , vol. 5. Hermann.Google Scholar
Chandler, G. J. & Kerswell, R. R. 2013 Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554595.Google Scholar
Constantin, P., Foias, C., Nicolaenko, B. & Temam, R. 1989 Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Springer.Google Scholar
Cvitanović, P. 2013 Recurrent flows: the clockwork behind turbulence. J. Fluid Mech. 726, 14.Google Scholar
Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G. & Vattay, G. 2014 Chaos: Classical and Quantum. Niels Bohr Institute.Google Scholar
Cvitanović, P. & Gibson, J. F. 2010 Geometry of turbulence in wall-bounded shear flows: periodic orbits. Phys. Scr. T 142, 014007.Google Scholar
Cvitanović, P. & Lan, Y. 2003 Turbulent fields and their recurrences. In Proceedings of 10th International Workshop on Multiparticle Production: Correlations and Fluctuations in QCD (ed. Antoniou, N.), World Scientific.Google Scholar
Dennis, J. E. Jr & Schnabel, R. B. 1996 Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM.Google Scholar
Deuflhard, P. 2011 Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, vol. 35. Springer.Google Scholar
Dormand, J. R. & Prince, P. J. 1980 A family of embedded Runge–Kutta formulae. J. Comput. Appl. Maths 6 (1), 1926.Google Scholar
Farazmand, M., Kevlahan, N. K.-R. & Protas, B. 2011 Controlling the dual cascade of two-dimensional turbulence. J. Fluid Mech. 668, 202222.Google Scholar
Fazendeiro, L., Boghosian, B. M., Coveney, P. V. & Lätt, J. 2010 Unstable periodic orbits in weak turbulence. J. Comput. Sci. 1, 1323.Google Scholar
Field, M. J. 1980 Equivariant dynamical systems. Trans. Am. Math. Soc. 259 (1), 185205.Google Scholar
Foias, C., Jolly, M. S., Kevrekidis, I. G., Sell, G. R. & Titi, E. S. 1988 On the computation of inertial manifolds. Phys. Lett. A 131, 433436.Google Scholar
Foias, C., Manley, O., Rosa, R. & Temam, R. 2001 Navier–Stokes Equations and Turbulence. Cambridge University Press.Google Scholar
Frisch, U. 1996 Turbulence. Cambridge University Press.Google Scholar
Gibbon, J. D. & Doering, C. R. 2003 Intermittency in solutions of the three-dimensional Navier–Stokes equations. J. Fluid Mech. 478, 227235.Google Scholar
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2008 Visualizing the geometry of state-space in plane Couette flow. J. Fluid Mech. 611, 107130.Google Scholar
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2009 Equilibrium and traveling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243266.Google Scholar
Gilmore, R. & Letellier, C. 2007 The Symmetry of Chaos. Oxford University Press.Google Scholar
Gunzburger, M. D. 2002 Perspectives in Flow Control and Optimization. SIAM.Google Scholar
Halcrow, J., Gibson, J. F., Cvitanović, P. & Viswanath, D. 2009 Heteroclinic connections in plane Couette flow. J. Fluid Mech. 621, 365376.Google Scholar
Holmes, P. 1993 Symmetries, heteroclinic cycles and intermittency in fluid flow. In Turbulence in Fluid Flows, pp. 4958. Springer.Google Scholar
Holmes, P., Lumley, J. L., Berkooz, G. & Rowley, C. W. 2012 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd edn. Cambridge University Press.Google Scholar
Holmes, P. & Stone, E. 1992 Heteroclinic cycles, exponential tails, and intermittency in turbulence production. In Studies in Turbulence (ed. Gatski, T. B., Speziale, C. G. & Sarkar, S.), pp. 179189. Springer.Google Scholar
Hopf, E. 1948 A mathematical example displaying features of turbulence. Commun. Appl. Maths 1, 303322.Google Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.Google Scholar
Kawahara, G., Kida, S. & Van Veen, L. 2006 Unstable periodic motion in turbulent flows. Nonlinear Process. Geophys. 13 (5), 499507.Google Scholar
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.Google Scholar
Kerswell, R. R., Pringle, C. C. T. & Willis, A. P. 2014 An optimization approach for analysing nonlinear stability with transition to turbulence in fluids as an exemplar. Rep. Prog. Phys. 77 (8), 085901.Google Scholar
Kreilos, T. & Eckhardt, B. 2012 Periodic orbits near onset of chaos in plane Couette flow. Chaos 22 (4), 047505.Google Scholar
Kuo, A. Y.-S. & Corrsin, S. 1971 Experiments on internal intermittency and fine-structure distribution functions in fully turbulent fluid. J. Fluid Mech. 50, 285319.Google Scholar
Lakoba, T. I. & Yang, J. 2007 A mode elimination technique to improve convergence of iteration methods for finding solitary waves. J. Comput. Phys. 226 (2), 16931709.Google Scholar
Lan, Y. & Cvitanović, P. 2004 Variational method for finding periodic orbits in a general flow. Phys. Rev. E 69, 016217.Google Scholar
Lucas, D. & Kerswell, R. 2014 Spatiotemporal dynamics in two-dimensional Kolmogorov flow over large domains. J. Fluid Mech. 750, 518554.Google Scholar
Lucas, D. & Kerswell, R. R. 2015 Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow. Phys. Fluids 27, 518554.Google Scholar
Marchioro, C. 1986 An example of absence of turbulence for any Reynolds number. Commun. Math. Phys. 105, 99106.Google Scholar
Marcus, P. S. & Tuckerman, L. S. 1987 Simulation of flow between concentric rotating spheres. Part 1. Steady states. J. Fluid Mech. 185, 130.Google Scholar
Mininni, P. D. & Pouquet, A. 2010 Rotating helical turbulence. II. Intermittency, scale invariance, and structures. Phys. Fluids 22 (3), 035106.Google Scholar
Monokrousos, A., Bottaro, A., Brandt, L., Di Vita, A. & Henningson, D. S. 2011 Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows. Phys. Rev. Lett. 106 (13), 134502.Google Scholar
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.Google Scholar
Nagata, M. 1997 Three-dimensional traveling-wave solutions in plane Couette flow. Phys. Rev. E 55, 20232025.Google Scholar
Platt, N., Sirovich, L. & Fitzmaurice, N. 1991 An investigation of chaotic Kolmogorov flows. Phys. Fluids A 3, 681696.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 2007 Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press.Google Scholar
Pringle, C. C. T. & Kerswell, R. R. 2010 Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105, 154502.Google Scholar
Rowley, C. W., Kevrekidis, I. G., Marsden, J. E. & Lust, K. 2003 Reduction and reconstruction for self-similar dynamical systems. Nonlinearity 16, 1257.Google Scholar
Ruelle, D. 1991 The turbulent fluid as a dynamical system. In New Perspectives in Turbulence (ed. Sirovich, L.), pp. 123138. Springer.Google Scholar
Ruppert-Felsot, J., Farge, M. & Petitjeans, P. 2009 Wavelet tools to study intermittency: application to vortex bursting. J. Fluid Mech. 636, 427453.Google Scholar
Saad, Y. & Schultz, M. H. 1986 GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856869.Google Scholar
Saupe, D. 1988 Discrete versus continuous Newton’s method: a case study. Acta Appl. Maths 13, 5980.Google Scholar
Schneider, K., Farge, M. & Kevlahan, N. K.-R. 2004 Spatial intermittency in two-dimensional turbulence: a wavelet approach. In Woods Hole Mathematics. Perspectives in Mathematics and Physics, vol. 34, pp. 302328.Google Scholar
Schneider, T. M., Gibson, J. F. & Burke, J. 2010 Snakes and ladders: localized solutions of plane Couette flow. Phys. Rev. Lett. 104 (10), 104501.Google Scholar
Siminos, E. & Cvitanović, P. 2011 Continuous symmetry reduction and return maps for high-dimensional flows. Physica D 240, 187198.Google Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Part II: symmetries and transformations. Q. Appl. Maths 45 (3), 573582.Google Scholar
Smale, S. 1981 The fundamental theorem of algebra and complexity theory. Bull. Am. Math. Soc. (N.S.) 4 (1), 136.Google Scholar
Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29 (1), 435472.Google Scholar
Trefethen, L. N. & Bau, D. 1997 Numerical Linear Algebra. SIAM.Google Scholar
Tuckerman, L., Bertagnolio, F., Daube, O., Quéré, P. L. & Barkley, D. 2000 Stokes preconditioning for the inverse Arnoldi method. In Continuation Methods for Fluid Dynamics (ed. Henry, D. & Bergeon, A.), Notes on Numerical Fluid Mechanics, vol. 74, pp. 241255. Springer.Google Scholar
Viswanath, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339358.Google Scholar
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9, 883900.Google Scholar
Waleffe, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 41404143.Google Scholar
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 15171543.Google Scholar
Willis, A. P., Cvitanović, P. & Avila, M. 2013 Revealing the state space of turbulent pipe flow by symmetry reduction. J. Fluid Mech. 721, 514540.Google Scholar
Willis, A. P., Short, K. Y. & Cvitanović, P. 2015 Relative periodic orbits form the backbone of turbulent pipe flow. Phys. Rev. E 93, 022204.Google Scholar
Yang, J. 2015 A numerical method for computing time-periodic solutions in dissipative wave systems. Stud. Appl. Maths 134 (4), 420455.Google Scholar
Yang, J. & Lakoba, T. I. 2007 Universally-convergent squared-operator iteration methods for solitary waves in general nonlinear wave equations. Stud. Appl. Maths 118 (2), 153197.Google Scholar