Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T15:18:39.792Z Has data issue: false hasContentIssue false

Amplitude modulation in particle-laden atmospheric surface layers

Published online by Cambridge University Press:  16 February 2023

Hongyou Liu
Affiliation:
Center for Particle-laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
Xibo He
Affiliation:
Center for Particle-laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
Xiaojing Zheng*
Affiliation:
Research Center for Applied Mechanics, Xidian University, Xi'an 710071, PR China
*
Email address for correspondence: [email protected]

Abstract

Particle effects on the amplitude modulation are investigated in this study based on observational data with various mass loading acquired from long-term measurements of aeolian sandstorms in high-Reynolds-number ($Re_{\tau }\sim O(10^6)$) near-neutral atmospheric surface layers. In both particle-laden and unladen flows, in addition to the positive top–down modulation behaviour in the logarithmic region, a significant modulation effect that exists for some specific motions is also found for the single-point amplitude modulation. The most energetic turbulent motions exhibit the strongest modulation effect, and the modulating signals do not change with the small-scale motions being modulated. In particle-laden flows, the length of the most energetic structure is almost constant, thus the scales of the modulating signal and carrier signal are hardly affected by particles. However, the addition of particles changes the distribution of energy between multi-scale turbulent motions. The kinetic energy of the large-scale component is less enhanced than the total kinetic energy by particles. This leads to a reduced energy proportion of the large-scale component and an augmented one of the small-scale component. Moreover, the particles produce a large damping in the degree of the amplitude modulation and move down the positions of the modulating signals and carrier signals corresponding to the strongest inter-layer modulation, but the damping is weakened with the wall-normal distance due to the decreased mass loading. This study may provide a more general insight into the modulation mechanism between multi-scale turbulent motions and the effect of particles on turbulence.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R.J., Meinhart, C.D. & Tomkins, C.D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Anderson, W. 2016 Amplitude modulation of streamwise velocity fluctuations in the roughness sublayer: evidence from large-eddy simulations. J. Fluid Mech. 789, 567588.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1), 111133.CrossRefGoogle Scholar
Balakumar, B.J. & Adrian, R.J. 2007 Large-and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A 365, 665681.Google ScholarPubMed
Bandyopadhyay, P.R. & Hussain, A.K.M.F. 1984 The coupling between scales in shear flows. Phys. Fluids 27 (9), 22212228.CrossRefGoogle Scholar
Bernardini, M. 2014 Reynolds number scaling of inertial particle statistics in turbulent channel flows. J. Fluid Mech. 758, R1.CrossRefGoogle Scholar
Bernardini, M. & Pirozzoli, S. 2011 Inner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys. Fluids 23 (6), 061701.CrossRefGoogle Scholar
Brown, G.L. & Thomas, A.S. 1977 Large structure in a turbulent boundary layer. Phys. Fluids 20 (10), S243S252.CrossRefGoogle Scholar
Chauhan, K.A. 2007 Study of canonical wall-bounded turbulent flows. Thesis, Illinois Institute of Technology, Chicago.Google Scholar
Dennis, D.J. 2015 Coherent structures in wall-bounded turbulence. An. Acad. Bras. Ciênc. 87 (2), 11611193.CrossRefGoogle ScholarPubMed
Dennis, D.J. & Nickels, T.B. 2011 Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673, 180217.CrossRefGoogle Scholar
Dogan, E., Örlü, R., Gatti, D., Vinuesa, R. & Schlatter, P. 2019 Quantification of amplitude modulation in wall-bounded turbulence. Fluid Dyn. Res. 51 (1), 011408.CrossRefGoogle Scholar
Dong, Z., Man, D., Luo, W., Qian, G., Wang, J., Zhao, M., Liu, S., Zhu, G. & Zhu, S. 2010 Horizontal aeolian sediment flux in the minqin area, a major source of chinese dust storms. Geomorphology 116 (1), 5866.CrossRefGoogle Scholar
Dritselis, C.D. & Vlachos, N.S. 2008 Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Phys. Fluids 20 (5), 055103.CrossRefGoogle Scholar
Dritselis, C.D. & Vlachos, N.S. 2011 Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow. Phys. Fluids 23 (2), 025103.CrossRefGoogle Scholar
Duan, Y., Chen, Q., Li, D. & Zhong, Q. 2020 Contributions of very large-scale motions to turbulence statistics in open channel flows. J. Fluid Mech. 892, A3.CrossRefGoogle Scholar
Emes, M.J., Arjomandi, M., Kelso, R.M. & Ghanadi, F. 2019 Turbulence length scales in a low-roughness near-neutral atmospheric surface layer. J. Turbul. 20 (9), 545562.CrossRefGoogle Scholar
Foken, T., Gockede, M., Mauder, M., Mahrt, L., Amiro, B. & Munger, W. 2004 Post-field data quality control. In Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis (ed. X. Lee, W. Massman & B. Law), pp. 181–208. Kluwer Academic.CrossRefGoogle Scholar
Guala, M., Hommema, S.E. & Adrian, R.J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.CrossRefGoogle Scholar
Guala, M., Metzger, M. & McKeon, B.J. 2010 Intermittency in the atmospheric surface layer: Unresolved or slowly varying? Phys. D: Nonlinear Phenom. 239 (14), 12511257.CrossRefGoogle Scholar
Head, M.R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.CrossRefGoogle Scholar
Högström, U. 1988 Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol. 42, 5578.CrossRefGoogle Scholar
Högström, U., Hunt, J.C.R. & Smedman, A.S. 2002 Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorol. 103 (1), 101124.CrossRefGoogle Scholar
Horst, T.W. & Oncley, S.P. 2006 Corrections to inertial-range power spectra measured by Csat3 and solent sonic anemometers, 1. Path-averaging errors. Boundary-Layer Meteorol. 119 (2), 375395.CrossRefGoogle Scholar
Hutchins, N., Chauhan, K., Marusic, I., Monty, J. & Klewicki, J. 2012 Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Boundary-Layer Meteorol. 145 (2), 273306.CrossRefGoogle Scholar
Hutchins, N., Hambleton, W.T. & Marusic, I. 2005 Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. J. Fluid Mech. 541, 2154.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365, 647664.Google ScholarPubMed
Inoue, M., Mathis, R., Marusic, I. & Pullin, D.I. 2012 Wall shear-stress statistics for the turbulent boundary layer by use of a predictive wall-model with LES. In 18th Australasian Fluid Mechanics Conference. Launceston, Australia.Google Scholar
Ishizuka, M., Mikami, M., Leys, J., Yamada, Y., Heidenreich, S., Shao, Y. & McTainsh, G.H. 2008 Effects of soil moisture and dried raindroplet crust on saltation and dust emission. J. Geophys. Res. 113 (D24), D24212.CrossRefGoogle Scholar
Jiménez, J. & Pinelli, A. 1999 The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335359.CrossRefGoogle Scholar
Kidanemariam, A.G., Chan-Braun, C., Doychev, T. & Uhlmann, M. 2013 Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys. 15 (2), 025031.CrossRefGoogle Scholar
Kim, K.C. & Adrian, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.CrossRefGoogle Scholar
Kim, T., Blois, G., Best, J.L. & Christensen, K.T. 2020 Experimental evidence of amplitude modulation in permeable-wall turbulence. J. Fluid Mech. 887, A3.CrossRefGoogle Scholar
Kline, S.J., Reynolds, W.C., Schraub, F.A. & Rundstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.CrossRefGoogle Scholar
Kunkel, G.J. & Marusic, I. 2006 Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J. Fluid Mech. 548, 375402.CrossRefGoogle Scholar
Lee, J. & Lee, C. 2019 The effect of wall-normal gravity on particle-laden near-wall turbulence. J. Fluid Mech. 873, 475507.CrossRefGoogle Scholar
Lee, J.H. & Sung, H.J. 2011 Very-large-scale motions in a turbulent boundary layer. J. Fluid Mech. 673, 80120.CrossRefGoogle Scholar
Li, X.C. 2013 The influence of sandstorm on the measured results of ultrasonic anemometer. Tech. Acoust. 32 (2), 111114.Google Scholar
Li, C., Lim, K., Berk, T., Abraham, A., Heisel, M., Guala, M., Coletti, F. & Hong, J. 2021 Settling and clustering of snow particles in atmospheric turbulence. J. Fluid Mech. 912, A49.CrossRefGoogle Scholar
Li, D., Luo, K. & Fan, J.R. 2016 Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer. J. Fluid Mech. 802, 359394.CrossRefGoogle Scholar
Li, Y., McLaughlin, J.B., Kontomaris, K. & Portela, L. 2001 Numerical simulation of particle-laden turbulent channel flow. Phys. Fluids 13 (10), 29572967.CrossRefGoogle Scholar
Li, B. & Neuman, C.M. 2012 Boundary-layer turbulence characteristics during aeolian saltation. Geophys. Res. Lett. 39, L11402.CrossRefGoogle Scholar
Li, J., Wang, H.F., Liu, Z.H., Chen, S. & Zheng, C.G. 2012 An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Exp. Fluids 53 (5), 13851403.CrossRefGoogle Scholar
Ligrani, P.M. & Moffat, R.J. 1986 Structure of transitionally rough and fully rough turbulent boundary layers. J. Fluid Mech. 162, 6998.CrossRefGoogle Scholar
Liu, H.Y., Bo, T.L. & Liang, Y.R. 2017 a The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers. Phys. Fluids 29 (3), 035104.CrossRefGoogle Scholar
Liu, H.Y., Wang, G.H. & Zheng, X.J. 2017 b Spatial length scales of large-scale structures in atmospheric surface layers. Phys. Rev. Fluids 2, 064606.CrossRefGoogle Scholar
Liu, H.Y., Wang, G.H. & Zheng, X.J. 2019 Amplitude modulation between multi-scale turbulent motions in high-Reynolds-number atmospheric surface layers. J. Fluid Mech. 861, 585607.CrossRefGoogle Scholar
Luhar, M., Sharma, A.S. & McKeon, B.J. 2014 On the structure and origin of pressure fluctuations in wall turbulence: predictions based on the resolvent analysis. J. Fluid Mech. 751, 3870.CrossRefGoogle Scholar
Marusic, I. 2001 On the role of large-scale structures in wall turbulence. Phys. Fluids 13 (3), 735743.CrossRefGoogle Scholar
Marusic, I., Mathis, R. & Hutchins, N. 2010 b Predictive model for wall-bounded turbulent flow. Science 329 (5988), 193196.CrossRefGoogle ScholarPubMed
Marusic, I., Mathis, R. & Hutchins, N. 2011 A wall-shear stress predictive model. In 13th European Turbulence Conference (ETC13), Journal of Physics: Conference Series, vol. 318, p. 012003. IOP Publishing.CrossRefGoogle Scholar
Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J. & Sreenivasan, K.R. 2010 a Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.CrossRefGoogle Scholar
Marusic, I., Monty, J.P., Hultmark, M. & Smits, A.J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.CrossRefGoogle Scholar
Mathai, V., Lohse, D. & Sun, C. 2020 Bubbly and buoyant particle-laden turbulent flows. Annu. Rev. Condens. Matter Phys. 11 (1), 529559.CrossRefGoogle Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2009 a Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.CrossRefGoogle Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2011 A predictive inner–outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech. 681, 537566.CrossRefGoogle Scholar
Mathis, R., Marusic, I., Chernyshenko, S.I. & Hutchins, N. 2013 Estimating wall-shear-stress fluctuations given an outer region input. J. Fluid Mech. 715, 163180.CrossRefGoogle Scholar
Mathis, R., Monty, J.P., Hutchins, N. & Marusic, I. 2009 b Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. Phys. Fluids 21 (11), 111703.CrossRefGoogle Scholar
Matinpour, H., Bennett, S., Atkinson, J. & Guala, M. 2019 Modulation of time-mean and turbulent flow by suspended sediment. Phys. Rev. Fluids 4, 074605.CrossRefGoogle Scholar
McGowan, H.A. & Clark, A. 2008 A vertical profile of PM10 dust concentrations measured during a regional dust event identified by MODIS Terra, Western Queensland, Australia. J. Geophys. Res. 113 (F2), F02S03.Google Scholar
Metzger, M.M. & Klewicki, J.C. 2001 A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Phys. Fluids 13 (3), 692701.CrossRefGoogle Scholar
Metzger, M., McKeon, B.J. & Holmes, H. 2007 The near-neutral atmospheric surface layer: turbulence and non-stationarity. Phil. Trans. R. Soc. Lond. A 365, 859876.Google ScholarPubMed
Mikami, M. 2005 Measurement of saltation process over gobi and sand dunes in the Taklimakan desert, China, with newly developed sand particle counter. J. Geophys. Res. 110 (D18), D18S02.Google Scholar
Monin, A. & Obukhov, S. 1954 Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk. SSSR Geophiz. Inst. 24 (151), 163187.Google Scholar
Nadeem, M., Lee, J.H., Lee, J. & Sung, H.J. 2015 Turbulent boundary layers over sparsely-spaced rod-roughened walls. Intl J. Heat Fluid Flow 56, 1627.CrossRefGoogle Scholar
Nagib, H.M. & Chauhan, K.A. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20 (10), 101518.CrossRefGoogle Scholar
Nickels, T.B., Marusic, I., Hafez, S. & Chong, M.S. 2005 Evidence of the $k_{1}^{-1}$ law in a high-Reynolds-number turbulent boundary layer. Phys. Rev. Lett. 95, 074501.CrossRefGoogle Scholar
Panebianco, J.E., Buschiazzo, D.E. & Zobeck, T.M. 2010 Comparison of different mass transport calculation methods for wind erosion quantification purposes. Earth Surf. Process. Landf. 35 (13), 15481555.CrossRefGoogle Scholar
Panebianco, J.E., Mendez, M.J. & Buschiazzo, D.E. 2016 PM10 emission, sandblasting efficiency and vertical entrainment during successive wind-erosion events: a wind-tunnel approach. Boundary-Layer Meteorol. 161 (2), 335353.CrossRefGoogle Scholar
Pathikonda, G. & Christensen, K.T. 2017 Inner–outer interactions in a turbulent boundary layer overlying complex roughness. Phys. Rev. Fluids 2 (4), 044603.CrossRefGoogle Scholar
Perry, A.E., Henbest, S.M. & Chong, M.S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.CrossRefGoogle Scholar
Petersen, A.J., Baker, L. & Coletti, F. 2019 Experimental study of inertial particles clustering and settling in homogeneous turbulence. J. Fluid Mech. 864, 925970.CrossRefGoogle Scholar
Picano, F., Breugem, W.-P. & Brandt, L. 2015 Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764, 463487.CrossRefGoogle Scholar
Portela, L.M. & Oliemans, R.V. 2003 Eulerian-lagrangian DNS/LES of particle-turbulence interactions in wall-bounded flows. Intl J. Numer. Meth. Flow 43 (9), 10451065.CrossRefGoogle Scholar
Rajagopalan, S. & Antonia, R.A. 1980 Interaction between large and small scale motions in a two-dimensional turbulent duct flow. Phys. Fluids 23 (6), 11011110.CrossRefGoogle Scholar
Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Rogers, C.B. & Eaton, J.K. 1991 The effect of small particles on fluid turbulence in a flat-plate, turbulent boundary layer in air. Phys. Fluids A: Fluid Dyn. 3 (5), 928937.CrossRefGoogle Scholar
Salesky, S.T. & Anderson, W. 2018 Buoyancy effects on large-scale motions in convective atmospheric boundary layers: implications for modulation of near-wall processes. J. Fluid Mech. 856, 135168.CrossRefGoogle Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.CrossRefGoogle Scholar
Shao, Y. & Mikami, M. 2005 Heterogeneous saltation: theory, observation and comparison. Boundary-Layer Meteorol. 115 (3), 359379.CrossRefGoogle Scholar
Smith, C.R. 1984 A synthesized model of the near-wall behavior in turbulent boundary layers. In Proceedings of the 8th Symposium on Turbulence. University of Missouri-Rolla.Google Scholar
Spark, E.H. & Dutton, J.A. 1972 Phase angle considerations in the modeling of intermittent turbulence. J. Atmos. Sci. 29 (2), 300303.2.0.CO;2>CrossRefGoogle Scholar
Squire, D.T., Baars, W.J., Hutchins, N. & Marusic, I. 2016 Inner–outer interactions in rough-wall turbulence. J. Turbul. 17 (12), 11591178.CrossRefGoogle Scholar
Sreenivasan, K.R. 1985 On the fine-scale intermittency of turbulence. J. Fluid Mech. 151, 81103.CrossRefGoogle Scholar
Stull, R.B. 1988 An Introduction to Boundary Layer Meteorology. Springer.CrossRefGoogle Scholar
Talluru, K.M., Baidya, R., Hutchins, N. & Marusic, I. 2014 Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech. 746, R1.CrossRefGoogle Scholar
Tardu, S.F. 2011 Statistical Approach to Wall Turbulence. John Wiley & Sons, Ltd.CrossRefGoogle Scholar
Tay, G.F., Kuhn, D.C. & Tachie, M.F. 2015 Effects of sedimenting particles on the turbulence structure in a horizontal channel flow. Phys. Fluids 27 (2), 025106.CrossRefGoogle Scholar
Theodorsen, T. 1952 Mechanism of turbulence. In Proceedings of the Second Midwestern Conference on Fluid Mechanics, pp. 1–19. Ohio State University.Google Scholar
Tomkins, C.D. & Adrian, R.J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.CrossRefGoogle Scholar
Tong, F., Duan, J. & Li, X. 2022 Characteristics of reattached boundary layer in shock wave and turbulent boundary layer interaction. Chin. J. Aeronaut. 35 (6), 172185.CrossRefGoogle Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41 (1), 375404.CrossRefGoogle Scholar
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Tracy, C.R., Welch, W.R. & Porter, W.P. 1980 Properties of air: a manual for use in biophysical ecology. Tech. Rep. 1. Department of Zoology, University of Wisconsin, Madison.Google Scholar
Tsuji, Y., Marusic, I. & Johansson, A.V. 2016 Amplitude modulation of pressure in turbulent boundary layer. Intl J. Heat Fluid Flow 61, 211.CrossRefGoogle Scholar
Vallikivi, M., Ganapathisubramani, B. & Smits, A.J. 2015 Spectral scaling in boundary layers and pipes at very high Reynolds numbers. J. Fluid Mech. 771, 303326.CrossRefGoogle Scholar
Wang, H. & Gao, Q. 2021 A study of inner-outer interactions in turbulent channel flows by interactive pod. Theor. Appl. Mech. Lett. 11 (1), 100222.CrossRefGoogle Scholar
Wang, G.H., Gu, H.H. & Zheng, X.J. 2020 Large scale structures of turbulent flows in the atmospheric surface layer with and without sand. Phys. Fluids 32 (10), 106604.CrossRefGoogle Scholar
Wang, G. & Richter, D.H. 2019 Two mechanisms of modulation of very-large-scale motions by inertial particles in open channel flow. J. Fluid Mech. 868, 538559.CrossRefGoogle Scholar
Wang, L.P. & Stock, D.E. 1993 Dispersion of heavy particles by turbulent motion. J. Atmos. Sci. 50 (13), 18971913.2.0.CO;2>CrossRefGoogle Scholar
Wang, G.H. & Zheng, X.J. 2016 Very large scale motions in the atmospheric surface layer: a field investigation. J. Fluid Mech. 802, 464489.CrossRefGoogle Scholar
Wilczak, J.M., Oncley, S.P. & Stage, S.A. 2001 Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol. 99 (1), 127150.CrossRefGoogle Scholar
Wyngaard, J.C. 1992 Atmospheric turbulence. Annu. Rev. Fluid Mech. 24 (1), 205234.CrossRefGoogle Scholar
Yao, Y.C., Huang, W.X. & Xu, C.X. 2018 Amplitude modulation and extreme events in turbulent channel flow. Acta Mech. Sin. 34, 19.CrossRefGoogle Scholar
Zhao, L.H., Andersson, H.I. & Gillissen, J.J.J. 2010 Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22 (8), 081702.CrossRefGoogle Scholar