Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T13:09:43.053Z Has data issue: false hasContentIssue false

Ageostrophic instability in a rotating stratified interior jet

Published online by Cambridge University Press:  28 September 2012

Claire Ménesguen*
Affiliation:
IGPP, UCLA, 405 Hilgard Avenue, Los Angeles, CA 90095-1567, USA
J. C. McWilliams
Affiliation:
IGPP, UCLA, 405 Hilgard Avenue, Los Angeles, CA 90095-1567, USA
M. J. Molemaker
Affiliation:
IGPP, UCLA, 405 Hilgard Avenue, Los Angeles, CA 90095-1567, USA
*
Email address for correspondence: [email protected]

Abstract

Oceanic large- and meso-scale flows are nearly balanced in forces between Earth’s rotation and density stratification effects (i.e. geostrophic, hydrostatic balance associated with small Rossby and Froude numbers). In this regime advective cross-scale interactions mostly drive energy toward larger scales (i.e. inverse cascade). However, viscous energy dissipation occurs at small scales. So how does the energy reservoir at larger scales leak toward small-scale dissipation to arrive at climate equilibrium? Here we solve the linear instability problem of a balanced flow in a rotating and continuously stratified fluid far away from any boundaries (i.e. an interior jet). The basic flow is unstable not only to geostrophic baroclinic and barotropic instabilities, but also to ageostrophic instabilities, leading to the growth of small-scale motions that we hypothesize are less constrained by geostrophic cascade behaviours in a nonlinear regime and thus could escape from the inverse energy cascade. This instability is investigated in the parameter regime of moderate Rossby and Froude numbers, below the well-known regimes of gravitational, centrifugal, and Kelvin–Helmholtz instability. The ageostrophic instability modes arise with increasing Rossby number through a near-degeneracy of two unstable modes with coincident phase speeds. The near-degeneracy occurs in the neighbourhood of an identified criterion for the non-integrability of the ‘isentropic balance equations’ (namely with the absolute vertical vorticity and the horizontal strain rate associated with the basic flow), beyond which development of an unbalanced component of the flow is expected. These modes extract energy from the basic state with large vertical Reynolds stress work (unlike geostrophic instabilities) and act locally to modify the basic flow by reducing the isopycnal Ertel potential vorticity gradient near both its zero surface and its critical surface (phase speed equal to basic flow speed).

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arakawa, A. & Moorthi, S. 1988 Baroclinic instability in vertically discrete systems. J. Atmos. Sci. 45, 16881707.2.0.CO;2>CrossRefGoogle Scholar
2. Arnoldi, W. E. 1951 The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Maths 9, 1729.CrossRefGoogle Scholar
3. Barth, J. A. 1994 Short-wavelength instabilities on coastal jets and fronts. J. Geophys. Res. 99, 1609516116.CrossRefGoogle Scholar
4. Boccaletti, G., Ferrari, R. & Fox-Kemper, B. 2007 Mixed layer instabilities and restratification. J. Phys. Oceanogr. 37, 22282250.CrossRefGoogle Scholar
5. Bretherton, F. P. 1966 Critical layer instability in baroclinic flows. Q. J. R. Meteorol. Soc. 92, 325334.CrossRefGoogle Scholar
6. Capet, X., McWilliams, J. C., Molemaker, M. J. & Shchepetkin, A. F. 2008 Mesoscale to submesoscale transition in the California current system. Part II. Frontal processes. J. Phys. Oceanogr. 38, 4464.CrossRefGoogle Scholar
7. Cerovečki, I., Plumb, R. A. & Heres, W. 2009 Eddy transport and mixing in a wind- and buoyancy-driven jet on the sphere. J. Phys. Oceanogr. 39, 11331149.CrossRefGoogle Scholar
8. Charney, J. G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 10871094.2.0.CO;2>CrossRefGoogle Scholar
9. Charney, J. G. & Phillips, N. A. 1953 Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows. J. Meteorol. 10, 7199.2.0.CO;2>CrossRefGoogle Scholar
10. Charney, J. G. & Stern, M. E. 1962 On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci. 19, 159172.2.0.CO;2>CrossRefGoogle Scholar
11. Craik, A. D. D. 1988 Wave Interactions and Fluid Flows. Cambridge University Press.Google Scholar
12. Dritschel, D. G. & Vanneste, J. 2006 Instability of a shallow-water potential-vorticity front. J. Fluid Mech. 561, 237254.CrossRefGoogle Scholar
13. Dritschel, D. G. & Viúdez, Á. 2003 A balanced approach to modelling rotating stably stratified geophysical flows. J. Fluid Mech. 488, 123150.CrossRefGoogle Scholar
14. Eliassen, A. 1983 The Charney–Stern theorem on barotropic-baroclinic instability. Pure Appl. Geophys. 121, 563572.CrossRefGoogle Scholar
15. Gill, A. E. 1982 Atmosphere-Ocean Dynamics. Elsevier.Google Scholar
16. Griffiths, R. W., Killworth, P. D. & Stern, M. E. 1982 Ageostrophic instability of ocean currents. J. Fluid Mech. 117, 343377.CrossRefGoogle Scholar
17. Griffiths, R. W. & Linden, P. F. 1982 Laboratory experiments on fronts. Geophys. Astrophys. Fluid Dyn. 19, 159187.CrossRefGoogle Scholar
18. Gula, J., Plougonven, R. & Zeitlin, V. 2009 Ageostrophic instabilities of fronts in a channel in a stratified rotating fluid. J. Fluid Mech. 627, 485507.CrossRefGoogle Scholar
19. Hayashi, Y.-Y. & Young, W. R. 1987 Stable and unstable shear modes of rotating parallel flows in shallow water. J. Fluid Mech. 184, 477504.CrossRefGoogle Scholar
20. Hoskins, B. J. 1976 Baroclinic waves and frontogenesis. Part I. Introduction and Eady waves. Q. J. R. Meteorol. Soc. 102, 103122.CrossRefGoogle Scholar
21. Hoskins, B. J., McIntyre, M. E. & Robertson, A. W. 1985 On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111, 877946.CrossRefGoogle Scholar
22. Hua, B. L., Moore, D. W. & Le Gentil, S. 1997 Inertial nonlinear equilibration of equatorial flows. J. Fluid Mech. 331, 345371.CrossRefGoogle Scholar
23. Killworth, P. D., Paldor, N. & Stern, M. E. 1984 Wave propagation and growth on a surface front in a two-layer geostrophic current. J. Mar. Res. 42, 761785.CrossRefGoogle Scholar
24. Kuo, A., Plumb, R. A. & Marshall, J. 2005 Transformed Eulerian-mean theory. Part II. Potential vorticity homogenization and the equilibrium of a wind- and buoyancy-driven zonal flow. J. Phys. Oceanogr. 35, 175187.CrossRefGoogle Scholar
25. Lehoucq, R. B. & Sorensen, D. C. 1996 Deflation techniques for an implicitly restarted Arnoldi iteration. SIAM J. Matrix Anal. Applics. 17, 789821.CrossRefGoogle Scholar
26. Lindzen, R. S., Farrell, B. & Tung, K.-K. 1980 The concept of wave overreflection and its application to baroclinic instability. J. Atmos. Sci. 37, 4463.2.0.CO;2>CrossRefGoogle Scholar
27. McIntyre, M. E. 1970 Diffusive destabilisation of the baroclinic circular vortex. Geophys. Fluid Dyn. 1, 1957.CrossRefGoogle Scholar
28. McWilliams, J. C. 2008 Fluid dynamics at the margin of rotational control. Environ. Fluid Mech. 8, 441449.CrossRefGoogle Scholar
29. McWilliams, J. C., Molemaker, M. J. & Yavneh, I. 2004 Ageostrophic, anticyclonic instability of a geostrophic, barotropic boundary current. Phys. Fluids 16, 37203725.CrossRefGoogle Scholar
30. McWilliams, J. C. & Yavneh, I. 1998 Fluctuation growth and instability associated with a singularity of the balance equations. Phys. Fluids 10, 25872596.CrossRefGoogle Scholar
31. McWilliams, J. C., Yavneh, I., Cullen, M. J. P. & Gent, P. R. 1998 The breakdown of large-scale flows in rotating, stratified fluids. Phys. Fluids 10, 31783184.CrossRefGoogle Scholar
32. Ménesguen, C., Hua, B. L., Fruman, M. D. & Schopp, R. 2009 Intermittent layering in the Atlantic equatorial deep jets. J. Mar. Res. 67.CrossRefGoogle Scholar
33. Molemaker, M. J., McWilliams, J. C. & Yavneh, I. 2001 Instability and equilibration of centrifugally stable stratified Taylor–Couette flow. Phys. Rev. Lett. 86, 52705273.CrossRefGoogle ScholarPubMed
34. Molemaker, M. J., McWilliams, J. C. & Yavneh, I. 2005 Baroclinic instability and loss of balance. J. Phys. Oceanogr. 35, 15051517.CrossRefGoogle Scholar
35. Moore, G. W. K. & Peltier, W. R. 1987 Cyclogenesis in frontal zones. J. Atmos. Sci. 44, 384409.2.0.CO;2>CrossRefGoogle Scholar
36. Moore, G. W. K. & Peltier, W. R. 1990 Nonseparable baroclinic instability. Part II. Primitive-equations dynamics. J. Atmos. Sci. 47, 12231242.2.0.CO;2>CrossRefGoogle Scholar
37. Nakamura, N. 1988 Scale selection of baroclinic instability – effects of stratification and nongeostrophy. J. Atmos. Sci. 45, 32533268.2.0.CO;2>CrossRefGoogle Scholar
38. Pennel, R., Stegner, A. & Béranger, K. 2012 Shelf impact on buoyant coastal current instabilities. J. Phys. Oceanogr. 42, 3961.CrossRefGoogle Scholar
39. Plougonven, R., Muraki, D. J. & Snyder, C. 2005 A baroclinic instability that couples balanced motions and gravity waves. J. Atmos. Sci. 62, 15451559.CrossRefGoogle Scholar
40. Plumb, R. A. & Ferrari, R. 2005 Transformed eulerian-mean theory. Part I. Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr. 35, 165174.CrossRefGoogle Scholar
41. Sakai, S. 1989 Rossby–Kelvin instability: a new type of ageostrophic instability caused by a resonance between Rossby waves and gravity waves. J. Fluid Mech. 202, 149176.CrossRefGoogle Scholar
42. Salwen, H., Cotton, F. W. & Grosch, C. E. 1980 Linear stability of Poiseuille flow in a circular pipe. J. Fluid Mech. 98, 273284.CrossRefGoogle Scholar
43. Salwen, H. & Grosch, C. E. 1972 The stability of Poiseuille flow in a pipe of circular cross-section. J. Fluid Mech. 54, 93112.CrossRefGoogle Scholar
44. Snyder, C. 1995 Stability of steady fronts with uniform potential vorticity. J. Atmos. Sci. 52, 724736.2.0.CO;2>CrossRefGoogle Scholar
45. Stone, P. H. 1970 On non-geostrophic baroclinic stability. Part II. J. Atmos. Sci. 27, 721726.2.0.CO;2>CrossRefGoogle Scholar
46. Taylor, J. R. & Ferrari, R. 2009 On the equilibration of a symmetrically unstable front via a secondary shear instability. J. Fluid Mech. 622, 103113.CrossRefGoogle Scholar
47. Thomas, L. N. & Taylor, J. R. 2010 Reduction of the usable wind-work on the general circulation by forced symmetric instability. Geophys. Res. Lett. 37, L18606.CrossRefGoogle Scholar
48. Vanneste, J. & Yavneh, I. 2007 Unbalanced instabilities of rapidly rotating stratified shear flows. J. Fluid Mech. 584, 373396.CrossRefGoogle Scholar
49. Wang, P., McWilliams, J. C. & Kizner, Z. 2012 Ageostrophic instability in rotating shallow water. J. Fluid Mech. doi:10.1017/jfm.2012.422.CrossRefGoogle Scholar
50. Yamazaki, Y. H. & Peltier, W. R. 2001 The existence of subsynoptic-scale baroclinic instability and the nonlinear evolution of shallow disturbances. J. Atmos. Sci. 58, 657683.2.0.CO;2>CrossRefGoogle Scholar
51. Yavneh, I., McWilliams, J. C. & Jeroen Molemaker, M. 2001 Non-axisymmetric instability of centrifugally stable stratified Taylor Couette flow. J. Fluid Mech. 448, 121.CrossRefGoogle Scholar