Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T02:06:54.619Z Has data issue: false hasContentIssue false

Added mass: a complex facet of tidal conversion at finite depth

Published online by Cambridge University Press:  13 October 2017

C. Brouzet*
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
E. V. Ermanyuk
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France Lavrentyev Institute of Hydrodynamics, av. Lavrentyev 15, Novosibirsk 630090, Russia Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
M. Moulin
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
G. Pillet
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
T. Dauxois
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
*
Email address for correspondence: [email protected]

Abstract

This paper revisits the problem of tidal conversion at a ridge in a uniformly stratified fluid of limited depth using measurements of complex-valued added mass. When the height of a sub-marine ridge is non-negligible with respect to the depth of the water, the tidal conversion can be enhanced in the supercritical regime or reduced in the subcritical regime with respect to the large depth situation. Tidal conversion can even be null for some specific cases. Here, we study experimentally the influence of finite depth on the added mass coefficients for three different ridge shapes. We first show that, at low forcing frequency, the tidal conversion is weakly enhanced by shallow depth for a semi-circular ridge. In addition, added mass coefficients measured for a vertical ridge show strong similarities with the ones obtained for the semi-circular ridge. Nevertheless, the enhancement of the tidal conversion at low forcing frequency for the vertical ridge has not been observed, in contrast with its supercritical shape. Finally, we provide the experimental evidence of a lack of tidal conversion due to the specific shape of a ridge for certain depth and frequency tuning.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleby, J. C. & Crighton, D. G. 1986 Non-Boussinesq effects in the diffraction of internal waves from an oscillating cylinder. Q. J. Mech. Appl. Maths 309, 209231.Google Scholar
Appleby, J. C. & Crighton, D. G. 1987 Internal gravity waves generated by oscillations of a sphere. J. Fluid Mech. 183, 439450.CrossRefGoogle Scholar
Baines, P. G. 1973 The generation of internal tides by flat-bump topography. Deep-Sea Res. 20, 179205.Google Scholar
Baines, P. G. 1982 On internal tide generation models. Deep-Sea Res. 29, 307338.CrossRefGoogle Scholar
Balmforth, N. G., Ierley, G. R. & Young, W. R. 2002 Tidal conversion by subcritical topography. J. Phys. Oceanogr. 32, 29002914.Google Scholar
Balmforth, N. G. & Peacock, T. 2009 Tidal conversion by supercritical topography. J. Phys. Oceanogr. 39, 1961974.Google Scholar
Bell, T. H. 1975 Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech. 67, 705722.Google Scholar
Brennen, C. E.1982 A review of added mass and fluid inertial forces. Department of the Navy, Port Hueneme, CA, USA. http://resolver.caltech.edu/CaltechAUTHORS:BREncel82.Google Scholar
Clarke, D. 2001 Calculation of the added mass of elliptical cylinders in shallow water. Ocean Engng 28, 13611381.Google Scholar
Cole, S. T., Rudnick, D. L., Hodges, B. A. & Martin, J. P. 2009 Observations of tidal internal wave beams at Kauai Channel, Hawaii. J. Phys. Oceanogr. 39, 421436.Google Scholar
Craig, P. D. 1987 Solutions for internal tide generation over coastal topography. J. Mar. Res. 45, 83105.Google Scholar
Cummins, W. E. 1962 The impulse response function and ship motions. Schiffstechnik 9, 101109.Google Scholar
Echeverri, P., Flynn, M. R., Winters, K. B. & Peacock, T. 2009 Low-mode internal tide generation by topography: an experimental and numerical investigation. J. Fluid Mech. 636, 91108.Google Scholar
Echeverri, P. & Peacock, T. 2010 Internal tide generation by arbitrary two-dimensional topography. J. Fluid Mech. 659, 247266.CrossRefGoogle Scholar
Echeverri, P., Yokossi, T., Balmforth, N. J. & Peacock, T. 2011 Tidally generated internal wave attractors between double ridges. J. Fluid Mech. 669, 354374.Google Scholar
Egbert, G. D. & Ray, R. D. 2000 Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405, 775778.CrossRefGoogle ScholarPubMed
Egbert, G. D. & Ray, R. D. 2001 Estimates of M2 tidal energy dissipation from TOPEX/POSEIDON altimeter data. J. Geophys. Res. 106, 2247522502.CrossRefGoogle Scholar
Ermanyuk, E. V. 2000 The use of impulse response functions for evaluation of added mass and damping coefficient of a circular cylinder oscillating in linearly stratified fluid. Exp. Fluids 28, 152159.Google Scholar
Ermanyuk, E. V. 2002 The rule of affine similitude for the force coefficients of a body oscillating in a uniformly stratified fluid. Exp. Fluids 32, 242251.Google Scholar
Ermanyuk, E. V., Flor, J.-B. & Voisin, B. 2011 Spatial structure of first and higher harmonic internal waves from a horizontally oscillating sphere. J. Fluid Mech. 671, 364383.CrossRefGoogle Scholar
Ermanyuk, E. V. & Gavrilov, N. V. 2002a Force on a body in a continuously stratified fluid. Part 1. Circular cylinder. J. Fluid Mech. 451, 421443.Google Scholar
Ermanyuk, E. V. & Gavrilov, N. V. 2002b Oscillations of cylinders in a linearly stratified fluid. J. Appl. Mech. Tech. Phys. 43, 503511.CrossRefGoogle Scholar
Ermanyuk, E. V. & Gavrilov, N. V. 2003 Force on a body in a continuously stratified fluid. Part 2. Sphere. J. Fluid Mech. 494, 3350.CrossRefGoogle Scholar
Garrett, C. & Kunze, E. 2007 Internal tide generation in deep ocean. Annu. Rev. Fluid Mech. 39, 5787.Google Scholar
Gorodtsov, V. A. & Teodorovich, E. V. 1986 Energy characteristics of harmonic internal wave generators. J. Appl. Mech. Tech. Phys. 27, 523529.CrossRefGoogle Scholar
Gurevich, M. I. 1940 Added mass of a lattice of rectangles. Prikl. Mat. Mekh. 4, 523529; (in Russian).Google Scholar
Hurley, D. G. 1997 The generation of internal waves by vibrating elliptic cylinders. Part 1. Inviscid solution. J. Fluid Mech. 351, 105118.CrossRefGoogle Scholar
Hurley, D. G. & Keady, G. 1997 The generation of internal waves by vibrating elliptic cylinders. Part 2. Approximate viscous solution. J. Fluid Mech. 351, 119138.Google Scholar
Khatiwala, S. 2003 Generation of internal tides in the ocean. Deep-Sea Res. I 50, 321.Google Scholar
King, B., Zhang, H. P. & Swinney, H. L. 2009 Tidal flow over three-dimensional topography in a stratified fluid. Phys. Fluids 21, 116601.Google Scholar
Korotkin, A. I. 2010 Added Masses of Ship Structures. Springer.Google Scholar
Lai, R. Y. S. & Lee, C.-M. 1981 Added mass of a spheroid oscillating in a linearly stratified fluid. Intl J. Engng 19 (11), 14111420.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.Google Scholar
Llewelyn Smith, S. G. & Young, W. R. 2002 Conversion of the barotropic tide. J. Phys. Oceanogr. 33, 15541566.2.0.CO;2>CrossRefGoogle Scholar
Llewelyn Smith, S. G. & Young, W. R. 2003 Tidal conversion at a very steep ridge. J. Fluid Mech. 495, 175191.Google Scholar
Lockwood-Taylor, J. 1930 Some hydrodynamic inertia coefficients. Phil. Mag. 9 (55), 161183.CrossRefGoogle Scholar
Maas, L. R. M. 2011 Topographies lacking tidal conversion. J. Fluid Mech. 684, 524.Google Scholar
Maas, L. R. M., Paci, A. & Yuan, B. 2015 Experiments on topographies lacking tidal conversion. New Wave Conference: New Challenges in Internal Wave Dynamics. École Normale Supérieure (ENS) de Lyon. https://newwave.sciencesconf.org/conference/newwave/book_newwave_en.pdf.Google Scholar
Morozov, E. G. 1995 Semidiurnial internal wave global field. Deep-Sea Res. I 42, 135148.CrossRefGoogle Scholar
Newman, J. N. 1969 Lateral motion of a slender body between parallel walls. J. Fluid Mech. 39 (1), 97115.Google Scholar
Newman, J. N. 1977 Marine Hydrodynamics. MIT Press.Google Scholar
Peacock, T., Echeverri, P. & Balmforth, N. J. 2008 An experimental investigation of internal tide generation by two-dimensional topography. J. Phys. Oceanogr. 38 (1), 235242.Google Scholar
Pétrélis, F., Llewelyn Smith, S. G. & Young, W. R. 2006 Tidal conversion at a submarine ridge. J. Phys. Oceanogr. 36 (6), 10531071.Google Scholar
Rapaka, N. R., Gayen, B. & Sarkar, S. 2013 Tidal conversion and turbulence at a model ridge: direct and large eddy simulations. J. Fluid Mech. 715, 181209.Google Scholar
St. Laurent, L., Stringer, S., Garrett, C. & Perrault-Joncas, D. 2003 The generation of internal tides by abrupt topography. Deep-Sea Res. I 50, 9871003.Google Scholar
Stokes, G. G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8106.Google Scholar
Sturova, I. V. 2001 Oscillations of a circular cylinder in a linearly stratified fluid. Fluid Dyn. 36 (3), 478488.Google Scholar
Sutherland, B. R., Dalziel, S. B., Hughes, G. O. & Linden, P. F. 1999 Visualization and measurement of internal waves by ‘synthetic’ schlieren. Part 1. Vertically oscillating cylinder. J. Fluid Mech. 390, 93126.Google Scholar
Sutherland, B. R., Hughes, G. O., Dalziel, S. B. & Linden, P. F. 2000 Internal waves revisited. Dyn. Atmos. Oceans 31, 209232.Google Scholar
Sutherland, B. R. & Linden, P. F. 2002 Internal wave excitation by a vertically oscillating elliptical cylinder. Phys. Fluids 14 (2), 721739.CrossRefGoogle Scholar
Vlasenko, V., Stashchuk, N. & Hutter, K. 2005 Baroclinic Tides. Theoretical Modeling and Observational Evidence. Cambridge University Press.Google Scholar
Voisin, B., Ermanyuk, E. V. & Flor, J.-B. 2011 Internal wave generation by oscillation of a sphere, with application to internal tides. J. Fluid Mech. 666, 308357.Google Scholar
Zhang, H. P., King, B. & Swinney, H. L. 2007 Experimental study of internal gravity waves generated by supercritical topography. Phys. Fluids 19, 096602.Google Scholar