Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T05:12:54.223Z Has data issue: false hasContentIssue false

Active drag reduction of a high-drag Ahmed body based on steady blowing

Published online by Cambridge University Press:  04 October 2018

B. F. Zhang
Affiliation:
Institute for Turbulence-Noise-Vibration Interactions and Control, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China State Key Laboratory of Ultra-precision Machining Technology, Department of Industrial and System Engineering, The Hong Kong Polytechnic University, Hong Kong
K. Liu
Affiliation:
Institute for Turbulence-Noise-Vibration Interactions and Control, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong
Y. Zhou*
Affiliation:
Institute for Turbulence-Noise-Vibration Interactions and Control, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China Digital Engineering Laboratory of Offshore Equipment, Shenzhen, China
S. To
Affiliation:
State Key Laboratory of Ultra-precision Machining Technology, Department of Industrial and System Engineering, The Hong Kong Polytechnic University, Hong Kong
J. Y. Tu
Affiliation:
School of Engineering, RMIT University, Melbourne 3001, Australia
*
Email address for correspondence: [email protected]

Abstract

Active drag reduction of an Ahmed body with a slant angle of $25^{\circ }$, corresponding to the high-drag regime, has been experimentally investigated at Reynolds number $Re=1.7\times 10^{5}$, based on the square root of the model cross-sectional area. Four individual actuations, produced by steady blowing, are applied separately around the edges of the rear window and vertical base, producing a drag reduction of up to 6–14 %. However, the combination of the individual actuations results in a drag reduction 29 %, higher than any previous drag reductions achieved experimentally and very close to the target (30 %) set by automotive industries. Extensive flow measurements are performed, with and without control, using force balance, pressure scanner, hot-wire, flow visualization and particle image velocimetry techniques. A marked change in the flow structure is captured in the wake of the body under control, including the flow separation bubbles, over the rear window or behind the vertical base, and the pair of C-pillar vortices at the two side edges of the rear window. The change is linked to the pressure rise on the slanted surface and the base. The mechanisms behind the effective control are proposed. The control efficiency is also estimated.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, S. R., Ramm, R. & Faltin, G.1984 Some salient features of the time-averaged ground vehicle wake. SAE Tech. Paper 840300, pp. 1–30. Society of Automotive Engineers.Google Scholar
Aubrun, S., Mcnally, J., Alvi, F. & Kourta, A. 2011 Separation flow control on a generic ground vehicle using steady microjet arrays. Exp. Fluids 51, 11771187.Google Scholar
Barros, D., Ruiz, T., Borée, J. & Noack, B. R. 2014 Control of a three-dimensional blunt body wake using low and high frequency pulsed jets. Intl J. Flow Control. 6, 6173.Google Scholar
Barros, D., Borée, J., Noack, B. R. & Spohn, A. 2016 Bluff body drag manipulation using pulsed jets and Coanda effect. J. Fluid Mech. 805, 422459.Google Scholar
Bellman, M., Agarwal, R., Naber, J. & Chusak, L.2010 Reducing energy consumption of ground vehicles by active flow control. ASME Paper ES2010-90363.Google Scholar
Beaudoin, J. F. & Aider, J. L. 2008 Drag and lift reduction of a 3D bluff body using flaps. Exp. Fluids 44, 491501.Google Scholar
Bideaux, E., Bobillier, P., Fournier, E., Gilliéron, P., Hajem, M. E., Champagne, J. Y., Gilotte, P. & Kourta, A. 2011 Drag reduction by pulsed jets on strongly unstructured wake: towards the square back control. Intl J. Aerodyn. 1, 282298.Google Scholar
Bidkar, R. A., Leblanc, L., Kulkarni, A. J., Bahadur, V., Ceccio, S. L. & Perlin, M. 2014 Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces. Phys. Fluids 26, 085108.Google Scholar
Boucinha, V., Weber, R. & Kourta, A. 2011 Drag reduction of a 3D bluff body using plasma actuators. Intl J. Aerodyn. 1, 262280.Google Scholar
Bruneau, C., Creuse, E., Delphine, D., Gilliéron, P. & Mortazavi, I. 2011 Active procedures to control the flow past the Ahmed body with a 25° rear window. Intl J. Aerodyn. 1, 299317.Google Scholar
Brunn, A., Nitsche, W., Henning, L. & King, R.2008 Application of slope-seeking to a generic car model for active drag control. AIAA Paper 2008-6734.Google Scholar
Brunn, A., Wassen, E., Sperber, D., Nitsche, W. & Thiele, F. 2007 Active drag control for a generic car model. Active Flow Control, NNFM 95, 247259.Google Scholar
Cattafesta, L. N. & Sheplak, M. 2011 Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247272.Google Scholar
Cengel, Y. A. & Cimbala, J. M. 2010 Fluid Mechanics: Fundamentals and Applications, 2nd edn, pp. 580590. McGraw Hill.Google Scholar
Choi, H., Jeon, W. P. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113139.Google Scholar
Choi, H., Lee, J. & Park, H. 2014 Aerodynamics of heavy vehicles. Annu. Rev. Fluid Mech. 46, 441468.Google Scholar
Corke, T. C., Enloe, C. L. & Wilkinson, S. P. 2010 Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42, 505529.Google Scholar
Evstafyeva, O., Morgans, A. S. & Dalla Longa, L. 2017 Simulation and feedback control of the Ahmed body flow exhibiting symmetry breaking behaviour. J. Fluid Mech. 817, R2.Google Scholar
Gad-el-Hak, M. 2000 Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press.Google Scholar
Gilliéron, P. & Kourta, A. 2013 Aerodynamic drag control by pulsed jets on simplified car geometry. Exp. Fluids 54 (1457), 116.Google Scholar
Glezer, A. & Amitay, M. 2002 Synthetic jets. Annu. Rev. Fluid Mech. 34, 503529.Google Scholar
Gomes-Fernandes, R., Ganapathisubramani, B. & Vassilicos, J. C. 2012 Particle image velocimetry study of fractal-generated turbulence. J. Fluid Mech. 711, 306336.Google Scholar
Grandemange, M., Gohlke, M. & Cadot, O. 2013 Turbulent wake past a three-dimensional blunt body. Part 1. Global modes and bi-stability. J. Fluid Mech. 722, 5184.Google Scholar
Howard, R. J. A. & Pourquie, M. 2002 Large eddy simulation of an Ahmed reference model. J. Turbul. 3, 012.Google Scholar
Huang, J. F., Zhou, Y. & Zhou, T. M. 2006 Three-dimensional wake structure measurement using a modified PIV technique. Exp. Fluids 40, 884896.Google Scholar
Hucho, W. H. & Sovran, G. 1993 Aerodynamics of road vehicles. Annu. Rev. Fluid Mech. 25, 485537.Google Scholar
Johnston, J. P. & Nishi, M. 1990 Vortex generator jets – means for flow separation control. AIAA J. 28, 989994.Google Scholar
Joseph, P., Amandolese, X. & Aider, J. L. 2012 Drag reduction on the 25° slant angle Ahmed reference body using pulsed jets. Exp. Fluids 52, 11691185.Google Scholar
Joseph, P., Amandolese, X., Edouard, C. & Aider, J. L. 2013 Flow control using MEMS pulsed micro-jets on the Ahmed body. Exp. Fluids 54 (1442), 112.Google Scholar
Kim, J., Hahn, S., Kim, J., Lee, D. K., Choi, J., Jeon, W. P. & Choi, H. 2004 Active control of turbulent flow over a model vehicle for drag reduction. J. Turbul. 5, 112.Google Scholar
Kourta, A. & Leclerc, C. 2013 Characterization of synthetic jet actuation with application to Ahmed body wake. Sensors Actuators A 192, 1326.Google Scholar
Krentel, D., Muminovic, R., Brunn, A., Nitsche, W. & King, R. 2010 Application of active flow control on generic 3D car models. Active Flow Control. NNFM 108, 223239.Google Scholar
Kumar, V. & Alvi, F. 2006 Use of high-speed microjets for active separation control in diffusers. AIAA J. 44, 273281.Google Scholar
Lienhart, H. & Becker, S.2003 Flow and turbulent structures in the wake of a simplified car model. SAE Tech. Paper 2003-01-0656. Society of Automotive Engineers.Google Scholar
Littlewood, R. & Passmore, M. 2012 Aerodynamic drag reduction of a simplified squareback vehicle using steady blowing. Exp. Fluids 53, 519529.Google Scholar
Lucas, J. M., Cadot, O., Herbert, V., Parpais, S. & Délery, J. 2017 A numerical investigation of the asymmetric wake mode of a squareback Ahmed body – effect of base cavity. J. Fluid Mech. 831, 675697.Google Scholar
Mcnally, J., Fernandez, E., Robertson, G., Kumar, R., Taira, K., Alvi, F., Yamaguchi, Y. & Murayama, K. 2015 Drag reduction on a flat-back ground vehicle with active flow control. J. Wind Engng Ind. Aerodyn. 145, 292303.Google Scholar
Metka, M. & Gregory, J. W. 2015 Drag reduction on the 25-deg Ahmed model using fluidic oscillators. Trans ASME J. Fluids Engng 137, 051108.Google Scholar
Nabavi, M., Siddiqui, M. H. K. & Dargahi, J. 2008 Experimental investigation of the formation of acoustic streaming in a rectangular enclosure using a synchronized PIV technique. Meas. Sci. Technol. 19, 065405.Google Scholar
Park, H., Cho, J. H., Lee, J., Lee, D. H. & Kim, K. H. 2013 Experimental study on synthetic jet array for aerodynamic drag reduction of a simplified car model. J. Mech. Sci. Technol. 27, 37213731.Google Scholar
Pastoor, M., Henning, L., Noack, B., King, R. & Tadmor, G. 2008 Feedback shear layer control for bluff body drag reduction. J. Fluid Mech. 608, 161196.Google Scholar
Pernod, P., Merlen, A., Talbi, A., Preobrazhensky, V., Viard, R., Gimeno, L. & Ducloux, O. 2011 IEMN/LEMAC magneto-mechanical microjets and micro-hotwires and aerodynamic active flow control. Intl J. Aerodyn. 1, 243261.Google Scholar
Pujals, G., Depardon, S. & Cossu, C. 2010 Drag reduction of a 3d bluff body using coherent streamwise streaks. Exp. Fluids 49, 10851094.Google Scholar
Quinn, D. B., Lauder, G. V. & Smits, A. J. 2014 Scaling the propulsive performance of heaving flexible panels. J. Fluid Mech. 738, 250267.Google Scholar
Raffel, M., Willert, C. E., Werely, S. T. & Kompenhans, J. 2007 Particle Image Velocimetry: A Practical Guide, 2nd edn. Springer.Google Scholar
Rajamanickam, K. & Basu, S. 2017 On the dynamics of vortex–droplet interactions, dispersion and breakup in a coaxial swirling flow. J. Fluid Mech. 827, 572613.Google Scholar
Rossitto, G., Sicot, C., Ferrand, V., Borée, J. & Harambat, F. 2016 Influence of afterbody rounding on the pressure distribution over a fastback vehicle. Exp. Fluids 57 (43), 112.Google Scholar
Rouméas, M., Gilliéron, P. & Kourta, A. 2009a Analysis and control of the near-wake flow over a square-back geometry. Comput. Fluids 38, 6070.Google Scholar
Rouméas, M., Gilliéron, P. & Kourta, A. 2009b Drag reduction by flow separation control on a car after body. Intl J. Numer. Meth. Fluids 60, 12221240.Google Scholar
Sciacchitano, A., Wieneke, B. & Scarano, F. 2013 PIV uncertainty quantification by image matching. Meas. Sci. Technol. 24, 045302.Google Scholar
Seifert, A., Stalnov, O., Sperber, D., Arwatz, G., Palei, V., David, S., Dayan, I. & Fono, I.2008 Large trucks drag reduction using active flow control. In AIAA Aerosp. Sci. Meet. Exh., Reno, NV, AIAA Paper 2008-743.Google Scholar
Sudin, M. N., Abdullah, M. A., Shamsuddin, S. A., Ramli, F. R. & Tahir, M. M. 2014 Review of research on vehicles aerodynamic drag reduction methods. Intl J. Mech. Mechatron Engng 14, 3547.Google Scholar
Thacker, A., Aubrun, S., Leroy, A. & Devinant, P. 2012 Effects of suppressing the 3D separation on the rear slant on the flow structures around an Ahmed body. J. Wind Engng Ind. Aerodyn. 107–108, 237243.Google Scholar
Tounsi, N., Mestiri, R., Keirsbulck, L, Oualli, H., Hanchi, S. & Aloui, F. 2016 Experimental study of flow control on bluff body using piezoelectric actuators. J. Appl. Fluid Mech. 9, 827838.Google Scholar
Venning, J., Jacono, D. L., Burton, D., Thompson, M. C. & Sheridan, J. 2017 The nature of the vortical structures in the near wake of the Ahmed body. Proc IMechE D 231, 12391244.Google Scholar
Verzicco, R., Fatica, M., Iaccarino, G. & Moin, P. 2002 Large eddy simulation of a road vehicle with drag-reduction devices. AIAA J. 40, 24472455.Google Scholar
Wang, X. W., Zhou, Y., Pin, Y. F. & Chan, T. L. 2013 Turbulent near wake of an Ahmed vehicle model. Exp. Fluids 54 (1490), 119.Google Scholar
Wassen, E. & Thiele, F.2008 Drag reduction for a generic car model using steady blowing. AIAA Paper 2008-3771.Google Scholar
Wassen, E. & Thiele, F.2009 Road vehicle drag reduction by combined steady blowing and suction. AIAA Paper 2009-4174.Google Scholar
Wassen, E. & Thiele, F.2010 Simulation of active separation control on a generic vehicle. AIAA Paper 2010-4702.Google Scholar
Wen, X., Tang, H. & Duan, F. 2015 Vortex dynamics of in-line twin synthetic jets in a laminar boundary layer. Phys. Fluids 27, 083601.Google Scholar
Yang, H. & Zhou, Y. 2016 Axisymmetric jet manipulated using two unsteady minijets. J. Fluid Mech. 808, 362396.Google Scholar
Zhang, B. F., Zhou, Y. & To, S. 2015 Unsteady flow structures around a high-drag Ahmed body. J. Fluid Mech. 777, 291326.Google Scholar
Zhou, Y., Du, C., Mi, J. & Wang, X. W. 2012 Turbulent round jet control using two steady mini-jets. AIAA J. 50, 736740.Google Scholar