Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-19T06:29:35.299Z Has data issue: false hasContentIssue false

Active control of high-speed and high-Reynolds-number jets using plasma actuators

Published online by Cambridge University Press:  26 April 2007

M. SAMIMY
Affiliation:
Department of Mechanical Engineering, GDTL/AARL; 2300 West Case Road, The Ohio State University, Columbus, Ohio 43235, USA
J.-H. KIM
Affiliation:
Department of Mechanical Engineering, GDTL/AARL; 2300 West Case Road, The Ohio State University, Columbus, Ohio 43235, USA
J. KASTNER
Affiliation:
Department of Mechanical Engineering, GDTL/AARL; 2300 West Case Road, The Ohio State University, Columbus, Ohio 43235, USA
I. ADAMOVICH
Affiliation:
Department of Mechanical Engineering, GDTL/AARL; 2300 West Case Road, The Ohio State University, Columbus, Ohio 43235, USA
Y. UTKIN
Affiliation:
Department of Mechanical Engineering, GDTL/AARL; 2300 West Case Road, The Ohio State University, Columbus, Ohio 43235, USA

Abstract

Localized arc filament plasma actuators are used to control an axisymmetric Mach 1.3 ideally expanded jet of 2.54 cm exit diameter and a Reynolds number based on the nozzle exit diameter of about 1.1×106. Measurements of growth and decay of perturbations seeded in the flow by the actuators, laser-based planar flow visualizations, and particle imaging velocimetry measurements are used to evaluate the effects of control. Eight actuators distributed azimuthally inside the nozzle, approximately 1 mm upstream of the nozzle exit, are used to force various azimuthal modes over a large frequency range (StDF of 0.13 to 1.3). The jet responded to the forcing over the entire range of frequencies, but the response was optimum (in terms of the development of large coherent structures and mixing enhancement) around the jet preferred Strouhal number of 0.33 (f = 5 kHz), in good agreement with the results in the literature for low-speed and low-Reynolds-number jets. The jet (with a thin boundary layer, D/θ ∼ 250) also responded to forcing with various azimuthal modes (m = 0 to 3 and m = ±1, ±2, ±4), again in agreement with instability analysis and experimental results in the literature for low-speed and low-Reynolds-number jets. Forcing the jet with the azimuthal mode m = ±1 at the jet preferred-mode frequency provided the maximum mixing enhancement, with a significant reduction in the jet potential core length and a significant increase in the jet centreline velocity decay rate beyond the end of the potential core.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRENCES

Adelgren, R. G., Elliott, G. S., Crawford, J. B., Carter, C. D. Donbar, J. M. & Grosjean, D. F. 2005 a Axisymmetric jet shear-layer excitation induced by laser energy and electric arc discharges. AIAA J. 43, 776791.CrossRefGoogle Scholar
Adelgren, R. G., Yan, H., Elliott, G. S., Knight, D. D. Beutner, T. J. & Zheltovodov, A. A. 2005 b Control of Edney IV Interaction by pulsed laser energy deposition. AIAA J. 43, 256269.CrossRefGoogle Scholar
Ahuja, K. K., Lepicovsky, J. & Burrin, R. H. 1982 Noise and flow structure of a tone-excited jet. AIAA J. 20, 17001706.CrossRefGoogle Scholar
Arakeri, V. H., Krothapalli, A., Siddavaram, V. Alkislar, M. B. & Lourenco, L. M. 2003 On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet. J. Fluid Mech. 490, 7598.CrossRefGoogle Scholar
Artana, G., D'Adamo, J. Leger, L. Moreau, E. & Touchard, G. 2002 Flow control with electrohydrodynamic actuators. AIAA J. 40, 17731779.CrossRefGoogle Scholar
Bobashev, S. V., Golovachov, Y u. P. & VanWie, D. M. Wie, D. M. 2003 Deceleration of supersonic plasma flow by an applied magnetic field. J. Propulsion Power 19, 538546.CrossRefGoogle Scholar
Bridges, J. 2006 Effect of heat on space-time correlations in jets. AIAA Paper 2006-2534.CrossRefGoogle Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 715816.CrossRefGoogle Scholar
Callender, B., Gutmark, E. & Martens, S. 2005 Far-field acoustic investigation into chevron nozzle mechanisms and trends. AIAA J. 43, 8795.CrossRefGoogle Scholar
Cohen, J. & Wygnanski, I. 1987 The evolution of instabilities in the axisymmetric jet. Part 1. The linear growth of disturbances near the nozzle. J. Fluid Mech. 176, 191219.CrossRefGoogle Scholar
Corke, T. C. & Kusek, S. M. 1993 Resonance in axisymmetric jets with controlled helical-mode input. J. Fluid Mech. 249, 307336.CrossRefGoogle Scholar
Corke, T. C. & Matlis, E. 2000 Phased plasma arrays for unsteady flow control. AIAA Paper2000-2323.CrossRefGoogle Scholar
Corke, T. C., Shakib, F. & Nagib, H. M. 1991 Mode selection and resonant phase locking in unstable axisymmetric jets. J. Fluid Mech. 223, 253311.CrossRefGoogle Scholar
Crighton, D. G. & Gaster, M. 1976 Stability of slowly diverging jet flow. J. Fluid Mech. 77, 387413.CrossRefGoogle Scholar
Crow, S. & Champagne, F. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48, 547591.CrossRefGoogle Scholar
Gutmark, E. & Ho, C.-M. 1983 Preferred modes and the spreading rates of jets. Phys. Fluids 26, 29322938.CrossRefGoogle Scholar
Gutmark, E. J., Schadow, K. C. & Yu, K. H. 1995 Mixing enhancement in supersonic free shear layer flows. Annu. Rev. Fluid Mech. 27, 375417.CrossRefGoogle Scholar
Henderson, B., Kinzie, K., Whitmire, J. & Abeysinghe, A. 2005 The impact of fluidic chevrons on jet noise. AIAA Paper2005-2888.CrossRefGoogle Scholar
Henoch, C. & Stace, J. 1995 Experimental investigation of a salt water turbulent boundary layer modified by an applied streamwise magnetohydrodynamic body force. Phys. Fluids 7, 13711383.CrossRefGoogle Scholar
Hileman, J. & Samimy, M. 2006 Mach number effects on jet noise sources and radiation to shallow angles. AIAA J. 44, 19151918.CrossRefGoogle Scholar
Hileman, J., Thurow, B. S., Caraballo, E. J. & Samimy, M. 2005 Large-scale structure evolution and sound emission in high-speed jets: real-time visualization with simultaneous acoustic measurements. J. Fluid Mech. 544, 277307.CrossRefGoogle Scholar
Ho, C.-M. & Huang, L.-S. 1982 Subharmonics and vortex merging in mixing layers. J. Fluid Mech. 119, 443473.CrossRefGoogle Scholar
Ho, C.-M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365424.CrossRefGoogle Scholar
Hussain, A. K, M. F. & Zaman, K. B. M. Q. 1980 Vortex pairing in a circular jet under controlled excitation. Part 2. Coherent structure dynamics. J. Fluid Mech 101, 493544.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1981 The ‘preferred mode’ of the axisymmetric jet. J. Fluid Mech. 110, 3971.CrossRefGoogle Scholar
Jubelin, B. 1980 New experimental studies on jet noise amplification. AIAA Paper 80-0961.CrossRefGoogle Scholar
Kastner, J., Hileman, J. & Samimy, M. 2004 Exploring high-speed axisymmetric jet noise control using Hartmann tube fluidic actuators. AIAA Paper2004-0186.CrossRefGoogle Scholar
Kibens, V. 1980 Discrete noise spectrum generated by an acoustically excited jet. AIAA J. 18, 434451CrossRefGoogle Scholar
Kibens, V., Dorris, J. III & Smith, D. M. 1999 Active flow control technology transition: the Boeing ACE Program. AIAA Paper 99-3507.CrossRefGoogle Scholar
Krothapali, A., Venkatakrishnan, L, LourencoL, Greska, B. L, Greska, B. & Elavarasan, R. 2003 Turbulence and noise suppression of a high-speed jet by water injection. J. Fluid Mech. 491, 131159.CrossRefGoogle Scholar
Leonov, S., Bityurin, V., Savelkin, K. & Yarantsev, D. 2002 Effect of electrical discharge on separation processes and shocks position in supersonic airflow. AIAA Paper 2002-0355.Google Scholar
Leonov, S., Bityurin, V., Yarantsev, D. & Youriev, A. 2003 The effect of plasma induced separation. AIAA Paper 2003-3853.CrossRefGoogle Scholar
Leonov, S., Yarantsev, D., Kuryachii, A. & Yuriev, A. 2004 Study of friction and separation control by surface plasma. AIAA Paper 2004-512.CrossRefGoogle Scholar
Lepicovsky, J., Ahuja, K. K & Burrin, R. H. 1985 Tone excited jets, Part III: Flow measurements. J. Sound Vib. 102, 7191.CrossRefGoogle Scholar
Lepicovsky, J. & Brown, W. H. 1989 Effects of nozzle-exit boundary-layer conditions on excitability of heated free jets. AIAA J. 27, 712718.CrossRefGoogle Scholar
Lu, H. Y. 1983 Effect of excitation on coaxial jet noise. AIAA J. 21, 214220.CrossRefGoogle Scholar
Macheret, S. O., Shneider, M. N. & Miles, R. B. 2004 Magnetohydrodynamic and electrohydrodynamic control of hypersonic flows of weakly ionized plasmas. AIAA J. 42, 13781387CrossRefGoogle Scholar
Mengle, V. G. 2000 Optimization of lobe mixer geometry and nozzle length for minimum jet noise. AIAA Paper 2000-1963.CrossRefGoogle Scholar
Michalke, A. 1965 On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23, 521544.CrossRefGoogle Scholar
Michalke, A. 1977 Instability of compressible circular free jet with consideration of the influence of the jet boundary layer thickness. NASA TM 75190.Google Scholar
Minucci, M. A. S., Toro, P. G. P., Oliveira, A. C., Ramos, A. G., Chanes, J. B. Pereira, A. L. Nagamatsu, H. T. Leik, ?. & Myrabo, N. 2005 Laser-supported directed-energy “air spike'' in hypersonic flow. J. Spacecraft Rockets 42, 5157.CrossRefGoogle Scholar
Mishin, G. I., Serov, Y. L. & Yavor, I. P. 1991 Flow around a sphere moving supersonically in a glow discharge plasma. Tech. Phys. Lett. 17, 413416.Google Scholar
Moore, C. J. 1977 The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80, 321367.CrossRefGoogle Scholar
Morrison, G. & McLaughlin, D. 1979 Noise generation by instabilities in low-Reynolds-number supersonic jets. J. Sound Vib. 65, 177191.CrossRefGoogle Scholar
Nishihara, M., Jiang, N., Rich, J. W., Lempert, W. R. Adamovich, I. V. & Gogineni, S. 2005 Low-temperature supersonic boundary layer control using repetitively pulsed MHD forcing. Phys. Fluids 17, 106102.CrossRefGoogle Scholar
Parekh, D. E., Kibens, V., Glezer, A., Wiltse, J. M. & Smith, D. M. 1996 Innovative jet flow control: mixing enhancement experiments. AIAA Paper 96-0308.CrossRefGoogle Scholar
Paschereit, C. O., Wygnanski, I. & Fiedler, H. E. 1995 Experimental investigation of subharmonic resonance in an axisymmetric jet. J. Fluid Mech. 283, 365407.CrossRefGoogle Scholar
Petitjean, B. P., McLaughlin, D. K. & Morris, P. J. 2006 An experimental investigation of density gradient fluctuations in high-speed jets using optical deflectometry. AIAA Paper 2006-2533.CrossRefGoogle Scholar
Plaschko, P. 1979 Helical instabilities of slowly divergent jets. J. Fluid Mech. 92, 209215.CrossRefGoogle Scholar
Post, M. L. & Corke, T. C. 2004 Separation control on high angle of attack airfoil using plasma actuators. AIAA J. 42, 21772184.CrossRefGoogle Scholar
Reshotko, E. 1994 Boundary-layer instability, transition, and control. AIAA Paper 94-0001.Google Scholar
Reynolds, W. C. & Bouchard, E. E. 1981 The effect of forcing on the mixing-layer region of a round jet. In Unsteady Shear Flows (ed. Michel, R., Cousteix, J. & Houdeville, R., pp. 402411. Springer.CrossRefGoogle Scholar
Reynolds, W. C., Parekh, D. E., Juvet, P. , J. D. & Lee, M. J. D. 2003 Bifurcating and blooming jets. Annu. Rev. Fluid Mech. 35, 295315.CrossRefGoogle Scholar
Roth, J. R., Sherman, D. M. & Wilkinson, S. P. 2000 Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA J. 38, 11661172.CrossRefGoogle Scholar
Saiyed, N. H., Mikkelsen, K. L. & Bridges, J. E. 2003 Acoustics and thrust of quiet separate-flow high-bypass-ratio nozzles. AIAA J. 41, 372378.CrossRefGoogle Scholar
Samimy, M., Adamovich, I., Webb, B. Kastner, J. Hileman, J. Keshav, S. & Palm, P. 2004 Development and characterization of plasma actuators for high speed jet control. Exps. Fluids 37, 577588.CrossRefGoogle Scholar
Samimy, M., Zaman, K. B. M. Q. & Reeder, M. F. 1993 Effect of tabs on the flow and noise field of an axisymmetric jet. AIAA J. 31, 609.CrossRefGoogle Scholar
Stromberg, J., McLaughlin, D. & Troutt, T. 1980 Flow field and acoustic properties of a Mach number 0.9 jet at a low-Reynolds-number. J. Sound Vib. 72, 159176.CrossRefGoogle Scholar
Thurow, B., Hileman, J., Lempert, W. & Samimy, M. 2002 A technique for real-time visualization of flow structure in high-speed flows. Phys. Fluids 14, 34493452.CrossRefGoogle Scholar
Troutt, T. R. & McLaughlin, D. K. 1982 Experiments on the flow and acoustic properties of a moderate-Reynolds number supersonic jet. J. Fluid Mech. 116, 123156.CrossRefGoogle Scholar
Utkin, Y. G., Keshav, S., Kim, J.-H., Kastner, J. Adamovich, I. V. & Samimy, M. 2007 Development and use of localized arc filament plasma actuators for high-speed flow control. J. Phys. D (to appear).CrossRefGoogle Scholar
Winant, C. D. & Browand, F. K. 1974 Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237252.CrossRefGoogle Scholar
Zaman, K. B. M. Q. 1999 Spreading characteristics of compressible jets from nozzles of various geometries. J. Fluid Mech. 383, 197228.CrossRefGoogle Scholar
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1980 Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response. J. Fluid Mech. 101, 449491.CrossRefGoogle Scholar
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1981 Turbulence suppression in free shear flows by controlled excitation. J. Fluid Mech. 103, 133159.CrossRefGoogle Scholar
Zaman, K. B., Reeder, M. F. & Samimy, M. 1994 Control of an axisymmetric jet using vortex generators. Phys. Fluids 6, 778793.CrossRefGoogle Scholar
Zavialov, I., Khorunzhenko, V., Starikovskaia, S. Starikovskii, A. & Saddoughi, S. 2005 Plasma control of boundary layer using low-temperature non-equilibrium plasma of gas discharge. AIAA Paper 2005-1180.Google Scholar