Hostname: page-component-f554764f5-sl7kg Total loading time: 0 Render date: 2025-04-19T01:34:05.566Z Has data issue: false hasContentIssue false

Acoustic microstreaming and shear stress produced by the interaction of an oscillating gas bubble with a viscoelastic particle

Published online by Cambridge University Press:  03 April 2025

Alexander A. Doinikov
Affiliation:
INSA de Lyon, CNRS, École Centrale de Lyon, Université Claude Bernard Lyon 1, LMFA UMR 5509, Villeurbanne 69621, France
Cyril Mauger
Affiliation:
INSA de Lyon, CNRS, École Centrale de Lyon, Université Claude Bernard Lyon 1, LMFA UMR 5509, Villeurbanne 69621, France
Philippe Blanc-Benon
Affiliation:
INSA de Lyon, CNRS, École Centrale de Lyon, Université Claude Bernard Lyon 1, LMFA UMR 5509, Villeurbanne 69621, France
Claude Inserra*
Affiliation:
Université Claude Bernard Lyon 1, Centre Léon Bérard, INSERM, UMR 1032 LabTAU, Lyon F-69003, France
*
Corresponding author: Claude Inserra, [email protected]

Abstract

An analytical theory is developed that describes acoustic microstreaming produced by the interaction of an oscillating gas bubble with a viscoelastic particle. The bubble is assumed to undergo axisymmetric oscillation modes, which can include radial oscillation, translation and shape modes. The oscillations of the particle are excited by the oscillations of the bubble. No restrictions are imposed on the ratio of the bubble and the particle radii to the viscous penetration depth and the separation distance, as well as on the ratio of the viscous penetration depth to the separation distance. Capabilities of the developed theory are illustrated by computational examples. The shear stress produced by the acoustic microstreaming on the particle’s surface is calculated. It is shown that this stress is much higher than the stress predicted by Nyborg’s formula (1958 J. Acoust. Soc. Am. 30, 329–339), which is commonly used to evaluate the time-averaged shear stress produced by a bubble on a rigid wall.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abramowitz, M. & Stegun, I.A. 1972 Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover.Google Scholar
Deng, C.X., Sieling, F., Pan, H. & Cui, J. 2004 Ultrasound-induced cell membrane porosity. Ultrasound Med. Biol. 30 (4), 519526.Google ScholarPubMed
Doinikov, A.A. & Bouakaz, A. 2010 Theoretical investigation of shear stress generated by a contrast microbubble on the cell membrane as a mechanism for sonoporation. J. Acoust. Soc. Am. 128 (1), 1119.CrossRefGoogle ScholarPubMed
Doinikov, A.A. & Bouakaz, A. 2014 Effect of a distant rigid wall on microstreaming generated by an acoustically driven gas bubble. J. Fluid Mech. 742, 425445.CrossRefGoogle Scholar
Doinikov, A.A., Cleve, S., Regnault, G., Mauger, C. & Inserra, C. 2019 Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. I. Case of modes 0 and m. Phys. Rev. E 100 (3), 033104.CrossRefGoogle Scholar
Doinikov, A.A., Regnault, G., Mauger, C., Blanc-Benon, P. & Inserra, C. 2022 Acoustic microstreaming produced by two interacting gas bubbles undergoing axisymmetric shape oscillations. J. Fluid Mech. 931, A19.Google Scholar
Dulińska, I., Targosz, M., Strojny, W., Lekka, M., Czuba, P., Balwierz, W. & Szymoński, M. 2006 Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy. J. Biochem. Biophys. Meth. 66 (1–3), 111.CrossRefGoogle ScholarPubMed
Inserra, C., Regnault, G., Cleve, S., Mauger, C. & Doinikov, A.A. 2020 Acoustic microstreaming produced by nonspherical oscillations of a gas bubble. III. Case of self-interacting modes n-n. Phys. Rev. E 101 (1), 013111.Google ScholarPubMed
Landau, L.D. & Lifshitz, E.M. 1970 Theory of Elasticity. Pergamon Press.Google Scholar
Landau, L.D. & Lifshitz, E.M. 1987 Fluid Mechanics. Pergamon Press.Google Scholar
Leibacher, I., Hahn, P. & Dual, J. 2015 Acoustophoretic cell and particle trapping on microfluidic sharp edges. Microfluid Nanofluid 19 (4), 923933.Google Scholar
Lewin, P.A. & Bjørnø, L. 1982 Acoustically induced shear stresses in the vicinity of microbubbles in tissue. J. Acoust. Soc. Am. 71 (3), 728734.CrossRefGoogle Scholar
Longuet-Higgins, M.S. 1998 Viscous streaming from an oscillating spherical bubble. Proc. R. Soc. Lond. A 454 (1970), 725742.CrossRefGoogle Scholar
Marmottant, P. & Hilgenfeldt, S. 2003 Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423 (6936), 153156.Google ScholarPubMed
Mehier-Humbert, S., Bettinger, T., Yan, F. & Guy, R.H. 2005 Plasma membrane poration induced by ultrasound exposure: implication for drug delivery. J. Control. Release 104 (1), 213222.CrossRefGoogle ScholarPubMed
Nilsson, J., Evander, M., Hammarström, B. & Laurell, T. 2009 Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 649 (2), 141157.CrossRefGoogle ScholarPubMed
Nyborg, W.L. 1958 Acoustic streaming near a boundary. J. Acoust. Soc. Am. 30 (4), 329339.CrossRefGoogle Scholar
Nyborg, W.L. 1965 Acoustic streaming. In Physical Acoustics (ed. Mason, W.P.), vol. IIB, pp. 266331. Academic.Google Scholar
Rooney, A. 1972 Shear as a mechanism for sonically induced biological effects. J. Acoust. Soc. Am. 52 (6B), 17181724.CrossRefGoogle ScholarPubMed
Saeidi, D., Saghafian, M., Javanmard, S.H. & Wiklund, M. 2020 A quantitative study of the secondary acoustic radiation force on biological cells during acoustophoresis. Micromachines 11 (2), 152.CrossRefGoogle ScholarPubMed
Tachibana, K., Uchida, T., Ogawa, K., Yamashita, N. & Tamura, K. 1999 Induction of cell-membrane porosity by ultrasound. Lancet 353 (9162), 1409.CrossRefGoogle ScholarPubMed
VanBavel, E. 2007 Effects of shear stress on endothelial cells: possible relevance for ultrasound applications. Prog. Biophys. Mol. Biol. 93 (1-3), 374383.CrossRefGoogle ScholarPubMed
Varshalovich, D.A., Moskalev, A.N. & Khersonskii, V.K. 1988 Quantum Theory of Angular Momentum. World Scientific.CrossRefGoogle Scholar
van Wamel, A., Kooiman, K., Harteveld, M., Emmer, M., ten Cate, F.J., Versluis, M. & de Jong, N. 2006 Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J. Control. Release 112 (2), 149155.CrossRefGoogle ScholarPubMed
Wu, J. 2002 Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells. Ultrasound Med. Biol. 28 (1), 125129.CrossRefGoogle ScholarPubMed
Wu, J. 2007 Shear stress in cells generated by ultrasound. Prog. Biophys. Mol. Biol. 93 (1–3), 363373.CrossRefGoogle ScholarPubMed
Wu, J. & Nyborg, W.L. 2008 Ultrasound, cavitation bubbles and their interaction with cells. Adv. Drug Deliv. Rev. 60 (10), 11031116.Google ScholarPubMed
Wu, J., Ross, J.P. & Chiu, J.-F. 2002 Reparable sonoporation generated by microstreaming. J. Acoust. Soc. Am. 111 (3), 14601464.CrossRefGoogle ScholarPubMed
Zinin, P.V. & Allen, J.S. 2009 Deformation of biological cells in the acoustic field of an oscillating bubble. Phys. Rev. E 79 (2), 021910.CrossRefGoogle ScholarPubMed
Zwillinger, D. 2003 Standard Mathematical Tables and Formulae. CRC Press.Google Scholar