Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T04:48:08.406Z Has data issue: false hasContentIssue false

Accumulation of motile elongated micro-organisms in turbulence

Published online by Cambridge University Press:  13 December 2013

Caijuan Zhan
Affiliation:
Linné Flow Centre and SeRC (Swedish e-Science Research Centre), KTH Mechanics, SE-100 44, Stockholm, Sweden
Gaetano Sardina
Affiliation:
Linné Flow Centre and SeRC (Swedish e-Science Research Centre), KTH Mechanics, SE-100 44, Stockholm, Sweden Facoltá di Ingegneria, Architettura e Scienze Motorie, UKE Universitá Kore di Enna, 94100 Enna, Italy
Enkeleida Lushi
Affiliation:
School of Engineering, Brown University, 182 Hope Street, Providence, RI 02912, USA
Luca Brandt*
Affiliation:
Linné Flow Centre and SeRC (Swedish e-Science Research Centre), KTH Mechanics, SE-100 44, Stockholm, Sweden
*
Email address for correspondence: [email protected]

Abstract

We study the effect of turbulence on marine life by performing numerical simulations of motile micro-organisms, modelled as prolate spheroids, in isotropic homogeneous turbulence. We show that the clustering and patchiness observed in laminar flows, linear shear and vortex flows, are significantly reduced in a three-dimensional turbulent flow mainly because of the complex topology; elongated micro-organisms show some level of clustering in the case of swimmers without any preferential alignment whereas spherical swimmers remain uniformly distributed. Micro-organisms with one preferential swimming direction (e.g. gyrotaxis) still show significant clustering if spherical in shape, whereas prolate swimmers remain more uniformly distributed. Due to their large sensitivity to the local shear, these elongated swimmers react more slowly to the action of vorticity and gravity and therefore do not have time to accumulate in a turbulent flow. These results show how purely hydrodynamic effects can alter the ecology of micro-organisms that can vary their shape and their preferential orientation.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C. F. & Paul, A. J. 1999 Phototaxis and geotaxis of light-adapted zoeae of the golden king crab lithodes aequispinus (anomura: Lithodidae) in the laboratory. J. Crustac. Biol. 106110.CrossRefGoogle Scholar
Adler, J. & Tso, W. W. 1974 “Decision”-making in bacteria: chemotactic response of escherichia coli to conflicting stimuli. Science 184 (143), 1292.CrossRefGoogle ScholarPubMed
Croze, O. A., Sardina, G., Ahmed, M., Bees, M. A. & Brandt, L. 2013 Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors. J. R. Soc. Interface 10 (81).CrossRefGoogle ScholarPubMed
DeLillo, F., Boffetta, G. & Cencini, M. 2012 Clustering of gyrotactic microorganisms in turbulent flows. Preprint, arXiv:1206.2570.Google Scholar
Durham, W. M. K. 2012 Phytoplankton in flow. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Durham, W. M., Climent, E., Barry, M., DeLillo, F., Boffetta, G., Cencini, M. & Stocker, R. 2013 Turbulence drives microscale patches of motile phytoplankton. Nat. Commun. 4 (2148), 17.CrossRefGoogle ScholarPubMed
Durham, W. M., Climent, E. & Stocker, R. 2011 Gyrotaxis in a steady vortical flow. Phys. Rev. Lett. 106 (23), 238102.CrossRefGoogle Scholar
Durham, W. M., Kessler, J. O. & Stocker, R. 2009 Disruption of vertical motility by shear triggers formation of thin phytoplankton layers. Science 323 (5917), 10671070.CrossRefGoogle ScholarPubMed
Franceschini, A., Filippidi, E., Guazzelli, E. & Pine, D. J. 2011 Transverse alignment of fibres in a periodically sheared suspension: an absorbing phase transition with a slowly varying control parameter. Phys. Rev. Lett. 107, 250603.CrossRefGoogle Scholar
Grünbaum, D. & Strathmann, R. R. 2003 Form, performance and trade-offs in swimming and stability of armed larvae. J. Mar. Res. 61, 659691.CrossRefGoogle Scholar
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C. M. 2012 Statistics of particle pair relative velocity in the homogeneous shear flow. Physica D 241 (3), 245250.CrossRefGoogle Scholar
Jumars, P. A., Trowbridge, J. H., Boss, E. & Karp-Boss, L. 2009 Turbulence-plankton interactions: a new cartoon. Mar. Ecol. 30 (2), 133150.CrossRefGoogle Scholar
Kessler, J. O. 1985 Hydrodynamic focusing of motile algal cells. Nature 313, 218220.CrossRefGoogle Scholar
Khurana, N., Blawzdziewicz, J. & Ouellette, N. T. 2011 Reduced transport of swimming particles in chaotic flow due to hydrodynamic trapping. Phys. Rev. Lett. 106 (19), 198104.CrossRefGoogle ScholarPubMed
Khurana, N. & Ouellette, N. T. 2012 Interactions between active particles and dynamical structures in chaotic flow. Phys. Fluids 24 (9), 091902.CrossRefGoogle Scholar
Kiørboe, T. 2008 A Mechanistic Approach to Plankton Ecology. Princeton University Press.Google Scholar
Kjørboe, T. & Visser, A. W. 1999 Predator and prey perception in copepods due to hydromechanical signals. Mar. Ecol. Prog. Ser. 179, 8195.CrossRefGoogle Scholar
Lewis, D. M. 2003 The orientation of gyrotactic spheroidal micro-organisms in a homogeneous isotropic turbulent flow. Proc. R. Soc. Lond. A 459 (2033), 12931323.CrossRefGoogle Scholar
Martin, E. A. 1983 Macmillan Dictionary of Life Sciences. Macmillan.CrossRefGoogle Scholar
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G. A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109, 134501.CrossRefGoogle ScholarPubMed
Pedley, T. J. & Kessler, J. O. 1987 The orientation of spheroidal microorganisms swimming in a flow field. Proc. R. Soc. Lond. B 231, 4770.Google Scholar
Pedley, T. J. & Kessler, J. O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24 (1), 313358.CrossRefGoogle Scholar
Pedley, T. J. & Kessler, J. O. 1993 Bioconvection. Sci. Prog. 76, 105–105.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Rogallo, R. S. 1981 Numerical experiments in homogeneous turbulence. NASA Rep. 81315.Google Scholar
Sardina, G, Schlatter, P., Brandt, L., Picano, F & Casciola, C. M. 2012 Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 5078.CrossRefGoogle Scholar
Sundaram, S. & Collins, L R 1997 Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech. 335, 75109.CrossRefGoogle Scholar
Thorn, G. J. & Bearon, R. N. 2010 Transport of spherical gyrotactic organisms in general three-dimensional flow fields. Phys. Fluids 22, 041902.CrossRefGoogle Scholar
Torney, C. & Neufeld, Z. 2007 Transport and aggregation of self-propelled particles in fluid flows. Phys. Rev. Lett. 99 (7), 78101.CrossRefGoogle ScholarPubMed
Vincent, A. & Meneguzzi, M. 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 120.CrossRefGoogle Scholar
Zirbel, M. J., Veron, F. & Latz, M. I. 2002 The reversible effect of flow on the morphology of ceratocorys horrida (peridiniales, dinophyta)*. J. Phycol. 36 (1), 4658.CrossRefGoogle Scholar