Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T16:02:37.000Z Has data issue: false hasContentIssue false

Absolute instability in shock-containing jets

Published online by Cambridge University Press:  08 November 2021

Petrônio A.S. Nogueira*
Affiliation:
Department of Mechanical and Aerospace Engineering, Laboratory for Turbulence Research in Aerospace and Combustion, Monash University, Clayton, VIC 3800, Australia
Peter Jordan
Affiliation:
Département Fluides, Thermique, Combustion, Institut PPrime, CNRS–Université de Poitiers–ENSMA, 86036 Poitiers, France
Vincent Jaunet
Affiliation:
Département Fluides, Thermique, Combustion, Institut PPrime, CNRS–Université de Poitiers–ENSMA, 86036 Poitiers, France
André V.G. Cavalieri
Affiliation:
Divisão de Engenharia Aeronáutica, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP 12228-900, Brazil
Aaron Towne
Affiliation:
Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI 48109, USA
Daniel Edgington-Mitchell
Affiliation:
Department of Mechanical and Aerospace Engineering, Laboratory for Turbulence Research in Aerospace and Combustion, Monash University, Clayton, VIC 3800, Australia
*
Email address for correspondence: [email protected]

Abstract

We present an analysis of the linear stability characteristics of shock-containing jets. The flow is linearised around a spatially periodic mean, which acts as a surrogate for a mean flow with a shock-cell structure, leading to a set of partial differential equations with periodic coefficients in space. Disturbances are written using the Floquet ansatz and Fourier modes in the streamwise direction, leading to an eigenvalue problem for the Floquet exponent. The characteristics of the solution are directly compared with the locally parallel case, and some of the features are similar. The inclusion of periodicity induces minor changes in the growth rate and phase velocity of the relevant modes for small shock amplitudes. On the other hand, the eigenfunctions are now subject to modulation related to the periodicity of the flow. Analysis of the spatio-temporal growth rates led to the identification of a saddle point between the Kelvin–Helmholtz mode and the guided jet mode, characterising an absolute instability mechanism. Frequencies and mode shapes related to the saddle points for two conditions (associated with axisymmetric and helical modes) are compared with screech frequencies and the most energetic coherent structures of screeching jets, resulting in a good agreement for both. The analysis shows that a periodic shock-cell structure has an impulse response that grows upstream, leading to oscillator behaviour. The results suggest that screech can occur in the absence of a nozzle, and that the upstream reflection condition is not essential for screech frequency selection. Connections to previous models are also discussed.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alkislar, M.B., Krothapalli, A., Choutapalli, I. & Lourenco, L. 2005 Structure of supersonic twin jets. AIAA J. 43 (11), 23092318.CrossRefGoogle Scholar
Baqui, Y.B., Agarwal, A., Cavalieri, A.V.G. & Sinayoko, S. 2015 A coherence-matched linear source mechanism for subsonic jet noise. J. Fluid Mech. 776, 235267.CrossRefGoogle Scholar
Batchelor, G.K. & Gill, A.E. 1962 Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14 (4), 529551.CrossRefGoogle Scholar
Beneddine, S., Mettot, C. & Sipp, D. 2015 Global stability analysis of underexpanded screeching jets. Eur. J. Mech. B/Fluids 49, 392399.CrossRefGoogle Scholar
Bers, A. 1975 Linear waves and instabilities. In Physique des Plasmas (ed. C. DeWitt & J. Peyraud), pp. 117–213. Gordon and Breach.Google Scholar
Brancher, P. & Chomaz, J.M. 1997 Absolute and convective secondary instabilities in spatially periodic shear flows. Phys. Rev. Lett. 78, 658661.CrossRefGoogle Scholar
Brandt, L., Cossu, C., Chomaz, J.-M., Huerre, P. & Henningson, D.S. 2003 On the convectively unstable nature of optimal streaks in boundary layers. J. Fluid Mech. 485, 221242.CrossRefGoogle Scholar
Brevdo, L., Bridges, T.J. & Smith, F.T. 1996 Absolute and convective instabilities of spatially periodic flows. Phil. Trans. R. Soc. Lond. A 354 (1710), 10271064.Google Scholar
Briggs, R.J. 1964 Electron-Stream Interaction with Plasmas, Research Monograph, vol. 29. MIT Press.CrossRefGoogle Scholar
Cavalieri, A.V.G., Jordan, P., Colonius, T. & Gervais, Y. 2012 Axisymmetric superdirectivity in subsonic jets. J. Fluid Mech. 704, 388420.CrossRefGoogle Scholar
Cavalieri, A.V.G., Jordan, P. & Lesshafft, L. 2019 Wave-packet models for jet dynamics and sound radiation. Appl. Mech. Rev. 71 (2), 020802.CrossRefGoogle Scholar
Chomaz, J.M., Huerre, P. & Redekopp, L.G. 1988 Bifurcations to local and global modes in spatially developing flows. Phys. Rev. Lett. 60, 2528.CrossRefGoogle ScholarPubMed
Coenen, W., Lesshafft, L., Garnaud, X. & Sevilla, A. 2017 Global instability of low-density jets. J. Fluid Mech. 820, 187207.CrossRefGoogle Scholar
Crighton, D.G. 1975 Basic principles of aerodynamic noise generation. Prog. Aerosp. Sci. 16 (1), 3196.CrossRefGoogle Scholar
Crighton, D.G. & Gaster, M. 1976 Stability of slowly diverging jet flow. J. Fluid Mech. 77 (2), 397413.CrossRefGoogle Scholar
Crow, S.C. & Champagne, F.H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48 (3), 547591.CrossRefGoogle Scholar
Edgington-Mitchell, D. 2019 Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets – a review. Intl J. Aeroacoust. 18 (2–3), 118188.CrossRefGoogle Scholar
Edgington-Mitchell, D., Honnery, D.R. & Soria, J. 2014 a The underexpanded jet Mach disk and its associated shear layer. Phys. Fluids 26 (9), 096101.CrossRefGoogle Scholar
Edgington-Mitchell, D., Jaunet, V., Jordan, P., Towne, A., Soria, J. & Honnery, D. 2018 Upstream-travelling acoustic jet modes as a closure mechanism for screech. J. Fluid Mech. 855, R1.CrossRefGoogle Scholar
Edgington-Mitchell, D., Oberleithner, K., Honnery, D.R. & Soria, J. 2014 b Coherent structure and sound production in the helical mode of a screeching axisymmetric jet. J. Fluid Mech. 748, 822847.CrossRefGoogle Scholar
Edgington-Mitchell, D., Wang, T., Nogueira, P., Schmidt, O., Jaunet, V., Duke, D., Jordan, P. & Towne, A. 2021 a Waves in screeching jets. J. Fluid Mech. 913, A7.CrossRefGoogle Scholar
Edgington-Mitchell, D., Weightman, J., Lock, S., Kirby, R., Nair, V., Soria, J. & Honnery, D. 2021 b The generation of screech tones by shock leakage. J. Fluid Mech. 908, A46.CrossRefGoogle Scholar
Garnaud, X., Lesshafft, L., Schmid, P.J. & Huerre, P. 2013 The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech. 716, 189202.CrossRefGoogle Scholar
Gloor, M., Obrist, D. & Kleiser, L. 2013 Linear stability and acoustic characteristics of compressible, viscous, subsonic coaxial jet flow. Phys. Fluids 25, 084102.CrossRefGoogle Scholar
Gojon, R., Bogey, C. & Mihaescu, M. 2018 Oscillation modes in screeching jets. AIAA J. 56 (7), 29182924.CrossRefGoogle Scholar
Herbert, T 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20 (1), 487526.CrossRefGoogle Scholar
Huerre, P. 2000 Open shear flow instabilities. In Perspective in Fluid Dynamics: Collective Introduction to Current Research (ed. G.K. Batchelor, H.K. Moffatt & M.G. Worster), pp. 159–229. Cambridge University Press.Google Scholar
Huerre, P. & Monkewitz, P.A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151168.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.CrossRefGoogle Scholar
Jeun, J., Nichols, J.W. & Jovanović, M.R. 2016 Input-output analysis of high-speed axisymmetric isothermal jet noise. Phys. Fluids 28 (4), 047101.CrossRefGoogle Scholar
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45 (1), 173195.CrossRefGoogle Scholar
Jordan, P., Jaunet, V., Towne, A., Cavalieri, A.V.G., Colonius, T., Schmidt, O. & Agarwal, A. 2018 Jet–flap interaction tones. J. Fluid Mech. 853, 333358.CrossRefGoogle Scholar
Lajús, F.C., Sinha, A., Cavalieri, A.V.G., Deschamps, C.J. & Colonius, T. 2019 Spatial stability analysis of subsonic corrugated jets. J. Fluid Mech. 876, 766791.CrossRefGoogle Scholar
Lesshafft, L. & Huerre, P. 2007 Linear impulse response in hot round jets. Phys. Fluids 19 (2), 024102.CrossRefGoogle Scholar
Lesshafft, L., Semeraro, O., Jaunet, V., Cavalieri, A.V.G. & Jordan, P. 2019 Resolvent-based modeling of coherent wave packets in a turbulent jet. Phys. Rev. Fluids 4, 063901.CrossRefGoogle Scholar
Li, X.R., Zhang, X.W., Hao, P.F. & He, F. 2020 Acoustic feedback loops for screech tones of underexpanded free round jets at different modes. J. Fluid Mech. 902, A17.CrossRefGoogle Scholar
Liu, J., Corrigan, A.T., Kailasanath, K., Heeb, N.S. & Gutmark, E.J. 2015 Numerical study of noise characteristics in overexpanded jet flows. In 53rd AIAA Aerospace Sciences Meeting, p. 0508. AIAA.CrossRefGoogle Scholar
Mancinelli, M., Jaunet, V., Jordan, P. & Towne, A. 2019 Screech-tone prediction using upstream-travelling jet modes. Exp. Fluids 60 (1), 22.CrossRefGoogle Scholar
Mancinelli, M., Jaunet, V., Jordan, P. & Towne, A. 2020 A complex-valued resonance model for axisymmetric screech tones in supersonic jets. J. Fluid Mech. (submitted) arXiv:2012.01342.Google Scholar
Manning, T. & Lele, S. 1998 Numerical simulations of shock-vortex interactions in supersonic jet screech. In 36th AIAA Aerospace Sciences Meeting and Exhibit, p. 282. AIAA.CrossRefGoogle Scholar
Manning, T. & Lele, S. 2000 A numerical investigation of sound generation in supersonic jet screech. In 6th Aeroacoustics Conference and Exhibit, p. 2081. AIAA.CrossRefGoogle Scholar
Marant, M. & Cossu, C. 2018 Influence of optimally amplified streamwise streaks on the Kelvin–Helmholtz instability. J. Fluid Mech. 838, 478500.CrossRefGoogle Scholar
Michalke, A. 1964 On the inviscid instability of the hyperbolic tangent velocity profile. J. Fluid Mech. 19 (04), 543556.CrossRefGoogle Scholar
Michalke, A. 1965 On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23 (3), 521544.CrossRefGoogle Scholar
Michalke, A. 1971 Instabilitat eines Kompressiblen Runden Freistrahls unter Berucksichtigung des Einflusses der Strahlgrenzschichtdicke. Z. Flugwiss. 19, 319328. (translation in NASA TM 75190).Google Scholar
Michalke, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.CrossRefGoogle Scholar
Monkewitz, P.A. 1988 A note on vortex shedding from axisymmetric bluff bodies. J. Fluid Mech. 192, 561575.CrossRefGoogle Scholar
Monkewitz, P.A., Huerre, P. & Chomaz, J.-M. 1993 Global linear stability analysis of weakly non-parallel shear flows. J. Fluid Mech. 251, 120.CrossRefGoogle Scholar
Monkewitz, P.A. & Nguyen, L.N. 1987 Absolute instability in the near-wake of two-dimensional bluff bodies. J. Fluids Struct. 1 (2), 165184.CrossRefGoogle Scholar
Monkewitz, P.A. & Sohn, K.D. 1988 Absolute instability in hot jets. AIAA J. 26, 911916.CrossRefGoogle Scholar
Nogueira, P.A.S. & Cavalieri, A.V.G. 2021 Dynamics of shear-layer coherent structures in a forced wall-bounded flow. J. Fluid Mech. 907, A32.CrossRefGoogle Scholar
Nogueira, P.A.S., Jaunet, V., Mancinelli, M., Jordan, P. & Edgington-Mitchell, D. 2020 Closure mechanism of the A1 and A2 modes in jet screech. J. Fluid Mech. (submitted).Google Scholar
Pack, D.C. 1950 A note on Prandtl's formula for the wave-length of a supersonic gas jet. Q. J. Mech. Appl. Maths 3 (2), 173181.CrossRefGoogle Scholar
Panda, J. 1999 An experimental investigation of screech noise generation. J. Fluid Mech. 378, 7196.CrossRefGoogle Scholar
Pickering, E., Rigas, G., Nogueira, P.A.S., Cavalieri, A.V.G., Schmidt, O.T. & Colonius, T. 2020 Lift-up, Kelvin–Helmholtz and Orr mechanisms in turbulent jets. J. Fluid Mech. 896, A2.CrossRefGoogle Scholar
Pier, B. & Huerre, P. 2001 Nonlinear self-sustained structures and fronts in spatially developing wake flows. J. Fluid Mech. 435, 145174.CrossRefGoogle Scholar
Ponton, M.K. & Seiner, J.M. 1992 The effects of nozzle exit lip thickness on plume resonance. J. Sound Vib. 154 (3), 531549.CrossRefGoogle Scholar
Powell, A. 1953 a The noise of choked jets. J. Acoust. Soc. Am. 25 (3), 385389.CrossRefGoogle Scholar
Powell, A 1953 b On the mechanism of choked jet noise. Proc. Phys. Soc. B 66 (12), 10391056.CrossRefGoogle Scholar
Powell, A., Umeda, Y. & Ishii, R. 1992 Observations of the oscillation modes of choked circular jets. J. Acoust. Soc. Am. 92 (5), 28232836.CrossRefGoogle Scholar
Raman, G. 1997 Cessation of screech in underexpanded jets. J. Fluid Mech. 336, 6990.CrossRefGoogle Scholar
Raman, G. 1998 Advances in understanding supersonic jet screech: review and perspective. Prog. Aerosp. Sci. 34 (1), 45106.CrossRefGoogle Scholar
Raman, G. 1999 Supersonic jet screech: half-century from Powell to the present. J. Sound Vib. 225 (3), 543571.CrossRefGoogle Scholar
Schmidt, O.T., Towne, A., Colonius, T., Cavalieri, A.V.G., Jordan, P. & Brès, G.A. 2017 Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. J. Fluid Mech. 825, 11531181.CrossRefGoogle Scholar
Schmidt, O.T., Towne, A., Rigas, G., Colonius, T. & Brès, G.A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.CrossRefGoogle Scholar
Shariff, K. & Manning, T.A. 2013 A ray tracing study of shock leakage in a model supersonic jet. Phys. Fluids 25 (7), 076103.CrossRefGoogle Scholar
Tam, C.K.W. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27 (1), 1743.CrossRefGoogle Scholar
Tam, C.K.W. & Hu, F.Q. 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201, 447483.CrossRefGoogle Scholar
Tam, C.K.W., Seiner, J.M. & Yu, J.C. 1986 Proposed relationship between broadband shock associated noise and screech tones. J. Sound Vib. 110 (2), 309321.CrossRefGoogle Scholar
Tam, C.K.W. & Tanna, H.K. 1982 Shock associated noise of supersonic jets from convergent-divergent nozzles. J. Sound Vib. 81 (3), 337358.CrossRefGoogle Scholar
Tan, D.J., Soria, J., Honnery, D. & Edgington-Mitchell, D. 2017 Novel method for investigating broadband velocity fluctuations in axisymmetric screeching jets. AIAA J. 55 (7), 23212334.CrossRefGoogle Scholar
Towne, A., Cavalieri, A.V.G., Jordan, P., Colonius, T., Schmidt, O., Jaunet, V. & Brès, G.A. 2017 Acoustic resonance in the potential core of subsonic jets. J. Fluid Mech. 825, 11131152.CrossRefGoogle Scholar
Towne, A., Schmidt, O.T. & Colonius, T. 2018 Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821867.CrossRefGoogle Scholar
Towne, A.S. 2016 Advancements in jet turbulence and noise modeling: accurate one-way solutions and empirical evaluation of the nonlinear forcing of wavepackets. PhD thesis, California Institute of Technology, Pasadena, CA.Google Scholar
Van Oudheusden, B.W., Scarano, F., Roosenboom, E.W.M., Casimiri, E.W.F. & Souverein, L.J. 2007 Evaluation of integral forces and pressure fields from planar velocimetry data for incompressible and compressible flows. Exp. Fluids 43 (2–3), 153162.CrossRefGoogle Scholar
Weideman, J.A. & Reddy, S.C. 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.CrossRefGoogle Scholar