Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T21:07:48.480Z Has data issue: false hasContentIssue false

Zero-Prandtl-number convection

Published online by Cambridge University Press:  26 April 2006

Olivier Thual
Affiliation:
National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307, USA Present address: CERFACS, 42 Av. Coriolis, 31057 Toulouse Cedex, France.

Abstract

The zero-Prandtl-number limit of the Oberbeck—Boussinesq equations is compared to small-Prandtl-number Rayleigh—Bénard convection through numerical simulations. Both no-slip and free-slip boundary conditions, imposed at the top and bottom of a small-aspect-ratio, horizontally periodic box are considered. A rich variety of regimes is observed as the Rayleigh number is increased: supercritical oscillatory instabilities for various values of the aspect ratios, competition between two-dimensional rolls, squares and hexagonal patterns, competition between travelling and standing waves, transition to chaos, and scalings laws for the first Rayleigh-number decade. This multiplicity of regimes can be attributed to the close interaction between the stationary and oscillatory instabilities at zero Prandtl number.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bolton, E. W. Busse, F, H. 1985 Stability of convection rolls in a layer with stress-free boundaries. J. Fluid Mech. 150, 487498.Google Scholar
Bolton, E. W., Busse, F. H. & Clever, R. M. 1986 Oscillatory instabilities of convection rolls at intermediate Prandtl numbers. J. Fluid Mech. 164, 469485.Google Scholar
Busse, F. H. 1967 On the stability of two-dimensional convection in a layer heated from below. J. Math. Phys. 46, 140150.Google Scholar
Busse, F. H. 1971 Stability regions of cellular flow. In Instability of Continuous Systems (ed. H. Leipholz), pp. 4147. Springer
Busse, F. H. 1972 The oscillatory instability of convection rolls in a low Prandtl number fluid. J. Fluid Mech. 52, 97112.Google Scholar
Busse, F. H. 1978 Nonlinear properties of convection. Rep. Prog. Phys. 41, 19291967.Google Scholar
Busse, F. H. 1981 Transition to turbulence in Rayleigh-Bénard convection. In Hydrodynamics Instabilities and the Transition to Turbulence (ed. H. L. Swinney & J. P. Gollub) pp. 97137. Springer
Busse, F. H. 1989 Fundamentals of thermal convection. In Mantle Convection. Plate Tectonics and Global Dynamics (ed. W. R. Peltier), pp. 2395. Gordon and Breach
Busse, F. H. & Bolton, E. W. 1984 Instabilities of convection rolls with stress-free boundaries near threshold. J. Fluid Mech. 147, 115125.Google Scholar
Busse, F. H. & Clever, R. M. 1979 Instabilities of convection rolls in a fluid of moderate Prandtl number. J. Fluid Mech. 91, 319335.Google Scholar
Busse, F. H. & Clever, R. M. 1981 An asymptotic model of two-dimensional convection in the limit of low Prandtl number. J. Fluid Mech. 102, 7583.Google Scholar
Busse, F. H. & Sieber, M. 1991 Regular and chaotic patterns of Rayleigh-Bénard convection. In Bifurcation and Chaos: Analysis, Algorithms, Applications (ed. R. Seydel, F. W. Schneider, T. Küppers and H. Trogen). International Series of Numerical Mathematics vol. 97, pp. 7992. Basel: Birkhäuser
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.
Chiffaudel, A., Fauve, S. & Perrin, B. 1987 Viscous and inertial convection at low Prandtl number: Experimental study. Europhys. lett. 4, 555560.Google Scholar
Clever, R. M. & Busse, F. H. 1974 Transition to time-dependent convection. J. Fluid Mech. 65, 625645.Google Scholar
Clever, R. M. & Busse, F. H. 1978 Large wavelength convection rolls in low Prandtl number fluid. Z. Angew. Math. Phys. 29, 711714.Google Scholar
Clever, R. M. & Busse, F. H. 1981 Low-Prandtl-number convection a layer heated from below. J. Fluid Mech. 102, 6174.Google Scholar
Clever, R. M. & Busse, F. H. 1987 Nonlinear oscillatory convection. J. Fluid Mech. 176, 403417.Google Scholar
Clever, R. M. & Busse, F. M. 1989 Nonlinear oscillatory convection in the presence of a vertical magnetic field. J. Fluid Mech. 201, 507523.Google Scholar
Clever, R. M. & Busse, F. H. 1990 Convection at very low Prandtl numbers, Phys. Fluids A2, 334–339.
Crawford, J. D. & Knobloch, E. 1991 Symmetry and symmetry-breaking bifurcations in fluid dynamics. Ann. Rev. Fluid Mech. 23, 341387.Google Scholar
Croquette, V. 1989a Convective pattern dynamics at low Prandtl number: Part I. Contemp. Phys. 30, 113133.Google Scholar
Croquette, V. 1989b Convective pattern dynamics at low Prandtl number: Part II. Contemp. Phys. 30, 153171.Google Scholar
Cross, M. C. 1980 Derivation of the amplitude equation at the Rayleigh—Bénard instability. Phys. Fluids 23, 17271731.Google Scholar
Daniels, P. G. & Ong, P. G. 1990 Nonlinear convection in a rigid channel uniformly heated from below. J. Fluid Mech. 215, 503523.Google Scholar
Fauve, S., Bolton, E. W. & Brachet, M. E. 1987 Nonlinear oscillatory convection: A quantitative phase dynamics approach. Physica D29, 202214.Google Scholar
Frisch, U., She, Z. T. & Thual, O. 1986 Viscoelastic behaviour of cellular solutions to the Kuramoto—Sivashinsky model. J. Fluid Mech. 168, 221240.Google Scholar
Golubitsky, M., Stewart, I. & Schaeffer, D. G. 1988 Singularities and Groups in Bifurcation Theory, vol. II, Chap. xvii. Springer.
Golubitsky, M., Swift, J. W. & Knobloch, E. 1984 Symmetries and pattern selection in Rayleigh-Bénard convection.. Physica D 10, 249276.Google Scholar
Herring, J. R. 1970 Convection at zero Prandtl number. Woods Hole Oceanogr. Inst. Tech. Rep. WHOI-70–01Google Scholar
Herring, J. R. 1987 Moment closure for thermal convection: A viable approach? In The Internal Solar Angular Velocity (ed. B. R. Durney and S. Sofia), pp. 275288. D. Reidel.
Jones, C. A., Moore, D. R. & Weiss, N. O. 1976 Axisymmetric convection in a cylinder. J. Fluid Mech. 73, 353388.Google Scholar
Kraichnan, R. H. & Spiegel, E. A. 1962 Model for energy transfer in isotropic turbulence. Phys. Fluids 5, 583588.Google Scholar
Lipps, F. B. 1976 Numerical simulation of three-dimensional Bénard convection in air. J. Fluid Mech. 75, 113148.Google Scholar
Malkus, W. V. R. & Veronis, G. 1958 Finite amplitude convection. J. Fluid Mech. 4, 225260.Google Scholar
Mclaughlin, J. B. & Orszag, S. A. 1982 Transition from periodic to chaotic thermal convection. J. Fluid Mech. 122, 123142.Google Scholar
Meneguzzi, M., Sulem, C., Sulem, P. L. & Thual, O. 1987 Three-dimensional numerical simulation of convection in low Prandtl number fluid. J. Fluid Mech. 182, 169191.Google Scholar
Moore, D. R. & Weiss, N. O. 1973 Two-dimensional Rayleigh—Bénard convection. J. Fluid Mech. 58, 289312.Google Scholar
Moser, R. D., Moin, P. & Leonard, A. 1983 A spectral numerical method for the Navier—Stokes equations with application to Taylor—Couette flow. J. Comput. Phys. 52, 524544.Google Scholar
Newell, A. C., Passot, T. & Soul, M. 1990 The phase diffusion and mean drift equations for convection at finite Rayleigh numbers in large containers. J. Fluid Mech. 220, 187252.Google Scholar
Newell, A. C. & Whitehead, J. A. 1969 Finite bandwidth, finite amplitude convection. J. Fluid Mech. 38, 279303.Google Scholar
Proctor, M. R. 1977 Inertial convection at low Prandtl number. J. Fluid Mech. 82, 97114.Google Scholar
Schlüter, A., Lortz, D. & Busse, F. H. 1965 On the stability of steady finite amplitude convection. J. Fluid Mech. 23, 129144.Google Scholar
Segel, L. A. 1969 Distant side-walls cause slow amplitude modulation of cellular convection. J. Fluid Mech. 38, 203224.Google Scholar
Siggia, E. D. & Zippelius, A. 1981 Pattern selection in Rayleigh-Bénard convection near threshold. Phys. Rev. Lett. 47, 835838.Google Scholar
Spiegel, E. A. 1962 Thermal turbulence in a very small Prandtl number. J. Geophys. Res. 67, 30633070.Google Scholar
Spiegel, E. A. & Veronis, G. 1960 On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442447.Google Scholar
Sulem, P., Sulem, C. & Thual, O. 1985 Direct numerical simulation of three-dimensional convection in liquid metals. Prog. Astro. Aeronaut. 100, 125151.Google Scholar
Tveitereid, M., Palm, E. & Skogvang, A. 1986 Transition to chaos in Rayleigh-Bénard convection. Dyn. Stab. Syst. 1, 343365.Google Scholar
Veronis, G. 1966 Large-amplitude Bénard convection. J. Fluid Mech. 26, 4968.Google Scholar
Wu, W. S., Lilly, D. K. & Kerr, R. M. 1991 Helicity and thermal convection wide shear. J. Atmos. Sci. (submitted).Google Scholar
Zippelius, A. & Siggia, E. D. 1982 Disappearance of stable convection between free-slip boundaries. Phys. Rev. A26, 17881790.Google Scholar
Zippelius, A. & Siggia, E. D. 1983 Stability of finite-amplitude convection. Phys. Fluids 26, 29052915.Google Scholar