Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-20T10:15:18.745Z Has data issue: false hasContentIssue false

The wavenumbers of supercritical surface-tension-driven Bénard convection

Published online by Cambridge University Press:  26 April 2006

E. L. Koschmieder
Affiliation:
College of Engineering and I. Prigogine Center for Statistical Mechanics. The University of Texas at Austin, Austin, TX 78712, USA
D. W. Switzer
Affiliation:
College of Engineering and I. Prigogine Center for Statistical Mechanics. The University of Texas at Austin, Austin, TX 78712, USA

Abstract

The cell size or the wavenumbers of supercritical hexagonal convection cells in primarily surface-tension-driven convection on a uniformly heated plate has been studied experimentally in thermal equilibrium in thin layers of silicone oil of large aspect ratio. It has been found that the cell size decreases with increased temperature difference in the slightly supercritical range, and that the cell size is unique within the experimental error. It has also been observed that the cell size reaches a minimum and begins to increase at larger temperature differences. This reversal of the rate of change of the wavenumber with temperature difference is attributed to influences of buoyancy on the fluid motion. The consequences of buoyancy have been tested with three fluid layers of different depth.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bénard, H. 1900 Rev. Gén. Sci Pure Appl. 11, 12611271, 13091328.
Block, M. J. 1956 Nature 178, 650651.
Cerisier, P., Ocelli, R., Pérez-Garcia, C. & Jamond, C. 1987a J. Phys. Paris 48, 569576.
Cerisier, P., Pérez-Garcia, C., Jamond, C. & Pantaloni, J. 1987b Phys. Rev. A 35, 19491952
Cerisier, P. & Zouine, M. 1989 Physico Chem. Hydrodyn. 11, 659–670.
Cloot, A. & Lebon, G. 1984 J. Fluid Mech. 145, 447469.
Dauzère, C. 1912 C. R. Acad. Sci. Paris 155, 394398.
Davis, S. H. 1969 J. Fluid Mech. 39, 347359.
Eckhaus, W. 1965 Studies in Non-Linear Stability Theory. Springer.
Jenkins, D. R. 1988 J. Fluid Mech. 190, 451469.
Koschmieder, E. L. 1966 Beitr. Phys. Atmos. 39, 111.
Koschmieder, E. L. 1967 J. Fluid Mech. 35, 527530.
Koschmieder, E. L. 1974 Adv. Chem. Phys. 26, 177212.
Koschmieder, E. L. 1991 Eur. J. Mech. B: Fluids 10, 233237.
Koschmieder, E. L. & Biggerstaff, M. I. 1986 J. Fluid Mech. 167, 4964.
Koschmieder, E. L. & Pallas, S. G. 1974 Intl J. Heat and Mass Transfer 17, 9911002.
Kraska, J. R. & Sani, R. L. 1979 Intl J. Heat and Mass Transfer 22, 535546.
Nield, D. A. 1964 J. Fluid Mech. 19, 341352.
Pearson, J. R. A. 1958 J. Fluid Mech. 4, 489500.
Rosenblat, S., Davis, S. H. & Homsy, G. M. 1982 J. Fluid Mech. 120, 91122.
Scanlon, J. W. & Segel, L. A. 1969 J. Fluid Mech. 30, 149162.