Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-20T10:59:24.392Z Has data issue: false hasContentIssue false

Wave modulation and breakdown

Published online by Cambridge University Press:  20 April 2006

W. K. Melville
Affiliation:
R. M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 and Institute of Geophysics and Planetary Physics, University of California, San Diego, La Jolla, CA 92093

Abstract

Time series of amplitude, frequency, wavenumber and phase speed are measured in an unstable deep-water wavetrain using a Hilbert-transform technique. The modulation variables evolve from sinusoidal perturbations that are well described as slowly varying Stokes waves, through increasingly asymmetric modulations that finally result in very rapid jumps or ‘phase reversals’. These anomalies appear to correspond to the ‘crest pairing’ described by Ramamonjiarisoa & Mollo-Christensen (1979). The measurements offer a novel local description of the instability of deep-water waves which contrasts markedly with the description afforded by conventional Fourier decomposition. The measurements display very large local modulations in the phase speed, modulations that may not be anticipated from measurements of the phase speeds of individual Fourier components travelling (to leading order) at the linear phase speed (Lake & Yuen 1978).

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bracewell, R. N. 1978 The Fourier Transform and Its Applications. McGraw-Hill.
Chu, V. H. & Mei, C. C. 1970 On slowly varying Stokes waves J. Fluid Mech. 41, 873887.Google Scholar
Crawford, D. R., Lake, B. M., Saffman, P.G. & Yuen, H. C. 1981 Effects of nonlinearity and spectral bandwidth on the dispersion relation and component phase speeds of surface gravity waves J. Fluid Mech. 112, 132.Google Scholar
Deutsch, R. 1962 Nonlinear Transformations of Random Processes. Prentice-Hall.
Feir, J. E. 1967 Discussion: Some results from wave pulse experiments. Proc. R. Soc. Lond. A299, 5458.Google Scholar
Lake, B. M. & Yuen, H. C. 1978 A new model for nonlinear wind waves. Part 1: Physical model and experimental evidence. J. Fluid Mech. 88, 3362.Google Scholar
Lake, B. M., Yuen, H. C., Rungaldier, H. & Ferguson, W. E. 1977 Nonlinear deep-water waves: theory and experiment. Part 2. Evolution of a continuous wave train. J. Fluid Mech. 83, 4974.Google Scholar
Lighthill, M. J. 1965 Contributions to the theory of waves in nonlinear dispersive systems J. Inst. Maths Applics 1, 269306.Google Scholar
Lighthill, M. J. 1967 Some special cases treated by the Whitham theory Proc. R. Soc. Lond. A299, 2853.Google Scholar
Longuet-Higgins, M.-S. 1978a The instabilities of gravity waves of finite amplitude in deep water I. Superharmonics Proc. R. Soc. Lond. A360, 471488.Google Scholar
Longuet-Higgins, M. S. 1978b The instabilities of gravity waves of finite amplitude in deep water II. Subharmonics Proc. R. Soc. Lond. A360, 489505.Google Scholar
Longuet-Higgins, M. S. 1980 Modulation of the amplitude of steep wind waves J. Fluid Mech. 99, 705713.Google Scholar
Melville, W. K. 1981 The instabilities of deep-water gravity waves. In Proc. IUCRM Symp. on Wave Dynamics and Radio Probing of the Ocean Surface, Miami Beach, May 1981 (to be published).
Melville, W. K. 1982 The instability and breaking of deep-water waves J. Fluid Mech. 115, 165185.Google Scholar
Phillips, O. M. 1981a Wave interactions – the evolution of an idea J. Fluid Mech. 106, 215227.Google Scholar
Phillips, O. M. 1981b The dispersion of short wavelets in the presence of a dominant long wave J. Fluid Mech. 107, 465485.Google Scholar
Ramamonjiarisoa, A. 1974 Contribution a l’étude de la structure statistique et des mécanismes de génération des vagues de vent. Thèse de doctorat d’état, Inst. de Mécanique Statistique de la Turbulence, Université de Provence.
Ramamonjiarisoa, A. & MOLLO-CHRISTENSEN, E. 1979 Modulation characteristics of sea surface waves J. Geophys. Res. 84, 77697775.Google Scholar
Sahar, G. 1981 Modulation of sea surface waves: observations and processing methods. M.S. thesis, M.I.T.
Schwartz, M., Bennett, W. R. & Stein, S. 1966 Communications Systems and Techniques. McGraw-Hill.
Whitham, G. B. 1965 Non-linear dispersive waves Proc. R. Soc. Lond. A283, 238261.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Academic.