Article contents
Wave breakdown in stratified shear flows
Published online by Cambridge University Press: 11 April 2006
Abstract
The wave-mechanical condition (Landahl 1972) for breakdown of an unsteady laminar flow into strong small-scale secondary instabilities is applied to some simple stratified inviscid shear flows. The cases considered have one or two discrete density interfaces and simple discontinuous or continuous velocity profiles. A primary wavelike disturbance to such a flow produces a perturbation velocity that is discontinuous at a density interface. The resulting instantaneous system, defined as the sum of the mean flow and the primary oscillation, develops a local secondary shear-flow instability that has a group velocity equal to the arithmetic mean of the instantaneous velocities on the two sides of the interface. According to the breakdown criterion, the disturbed flow will become critical whenever this velocity reaches a value equal to the phase velocity of the primary wave. The calculations show that for a single density interface breakdown may occur for low to moderate wave amplitudes in a fairly narrow range of Richardson numbers on the stable side of the stability boundary. On the other hand, in the unstable regime maximum wave slopes of order unity may be reached before breakdown occurs; this conclusion is in qualitative agreement with experiments. When the system includes two density interfaces, it is found that there exists a range of high Richardson numbers far into the stable regime for which breakdown may take place even for very small and zero wave interface deflexions.
- Type
- Research Article
- Information
- Copyright
- © 1977 Cambridge University Press
References
- 4
- Cited by