Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T11:08:06.521Z Has data issue: false hasContentIssue false

Wall shear stress from jetting cavitation bubbles

Published online by Cambridge University Press:  04 May 2018

Qingyun Zeng
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
Silvestre Roberto Gonzalez-Avila
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
Rory Dijkink
Affiliation:
School of Life Science, Engineering & Design, Saxion University of Applied Sciences, M. H. Tromplaan 28, 7513AB Enschede, The Netherlands
Phoevos Koukouvinis
Affiliation:
City, University of London, School of Mathematics, Computer Science and Engineering, Northampton Square, London EC1V 0HB, UK
Manolis Gavaises
Affiliation:
City, University of London, School of Mathematics, Computer Science and Engineering, Northampton Square, London EC1V 0HB, UK
Claus-Dieter Ohl*
Affiliation:
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore Institute of Physics, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39016 Magdeburg, Germany
*
Email address for correspondence: [email protected]

Abstract

The collapse of a cavitation bubble near a rigid boundary induces a high-speed transient jet accelerating liquid onto the boundary. The shear flow produced by this event has many applications, examples of which are surface cleaning, cell membrane poration and enhanced cooling. Yet the magnitude and spatio-temporal distribution of the wall shear stress are not well understood, neither experimentally nor by simulations. Here we solve the flow in the boundary layer using an axisymmetric compressible volume-of-fluid solver from the OpenFOAM framework and discuss the resulting wall shear stress generated for a non-dimensional distance, $\unicode[STIX]{x1D6FE}=1.0$ ( $\unicode[STIX]{x1D6FE}=h/R_{max}$ , where $h$ is the distance of the initial bubble centre to the boundary, and $R_{max}$ is the maximum spherical equivalent radius of the bubble). The calculation of the wall shear stress is found to be reliable once the flow region with constant shear rate in the boundary layer is determined. Very high wall shear stresses of 100 kPa are found during the early spreading of the jet, followed by complex flows composed of annular stagnation rings and secondary vortices. Although the simulated bubble dynamics agrees very well with experiments, we obtain only qualitative agreement with experiments due to inherent experimental challenges.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Best, J. P. & Kucera, A. 1992 A numerical investigation of non-spherical rebounding bubbles. J. Fluid Mech. 245, 137154.CrossRefGoogle Scholar
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19 (1), 99123.Google Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.CrossRefGoogle Scholar
Chahine, G. L., Kapahi, A., Choi, J.-K. & Hsiao, C.-T. 2016 Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrason. Sonochem. 29, 528549.Google Scholar
Cole, R. H. 1965 Underwater Explosions. Dover.Google Scholar
Deshpande, M. D. & Vaishnav, R. N. 1982 Submerged laminar jet impingement on a plane. J. Fluid Mech. 114, 213236.Google Scholar
Deshpande, M. D. & Vaishnav, R. N. 1983 Wall stress distribution due to jet impingement. J. Eng. Mech. 109 (2), 479493.CrossRefGoogle Scholar
Dijkink, R. & Ohl, C.-D. 2008 Measurement of cavitation induced wall shear stress. Appl. Phys. Lett. 93 (25), 254107.CrossRefGoogle Scholar
Glauert, M. B. 1956 The wall jet. J. Fluid Mech. 1 (6), 625643.CrossRefGoogle Scholar
Gonzalez-Avila, S. R., Huang, X., Quinto-Su, P. A., Wu, T. & Ohl, C.-D. 2011 Motion of micrometer sized spherical particles exposed to a transient radial flow: attraction, repulsion, and rotation. Phys. Rev. Lett. 107 (7), 074503.CrossRefGoogle ScholarPubMed
Kim, T.-H. & Kim, H.-Y. 2014 Disruptive bubble behaviour leading to microstructure damage in an ultrasonic field. J. Fluid Mech. 750, 355371.CrossRefGoogle Scholar
Kim, W., Kim, T.-H., Choi, J. & Kim, H.-Y. 2009 Mechanism of particle removal by megasonic waves. Appl. Phys. Lett. 94 (8), 081908.Google Scholar
Koch, M., Lechner, C., Reuter, F., Köhler, K., Mettin, R. & Lauterborn, W. 2016 Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using openfoam. Comput. Fluids 126, 7190.Google Scholar
Koukouvinis, P., Gavaises, M., Supponen, O. & Farhat, M. 2016a Numerical simulation of a collapsing bubble subject to gravity. Phys. Fluids 28 (3), 032110.CrossRefGoogle Scholar
Koukouvinis, P., Gavaises, M., Supponen, O. & Farhat, M. 2016b Simulation of bubble expansion and collapse in the vicinity of a free surface. Phys. Fluids 28 (5), 052103.CrossRefGoogle Scholar
Krasovitski, B. & Kimmel, E. 2004 Shear stress induced by a gas bubble pulsating in an ultrasonic field near a wall. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 (8), 973979.Google Scholar
Le Gac, S., Zwaan, Ed, van den Berg, A. & Ohl, C.-D. 2007 Sonoporation of suspension cells with a single cavitation bubble in a microfluidic confinement. Lab on a Chip 7 (12), 16661672.Google Scholar
Lee, M., Klaseboer, E. & Khoo, B. C. 2007 On the boundary integral method for the rebounding bubble. J. Fluid Mech. 570, 407429.Google Scholar
MacDonald, J. R. 1969 Review of some experimental and analytical equations of state. Rev. Mod. Phys. 41 (2), 316349.CrossRefGoogle Scholar
Maisonhaute, E., Brookes, B. A. & Compton, R. G. 2002a Surface acoustic cavitation understood via nanosecond electrochemistry. 2. The motion of acoustic bubbles. J. Phys. Chem. B 106 (12), 31663172.Google Scholar
Maisonhaute, E., Prado, C., White, P. C. & Compton, R. G. 2002b Surface acoustic cavitation understood via nanosecond electrochemistry. Part III: shear stress in ultrasonic cleaning. Ultrason. Sonochem. 9 (6), 297303.Google Scholar
Miller, S. T., Jasak, H., Boger, D. A., Paterson, E. G. & Nedungadi, A. 2013 A pressure-based, compressible, two-phase flow finite volume method for underwater explosions. Comput. Fluids 87, 132143.Google Scholar
Narayanan, V., Seyed-Yagoobi, J. & Page, R. H. 2004 An experimental study of fluid mechanics and heat transfer in an impinging slot jet flow. Intl J. Heat Mass Transfer 47 (8), 18271845.Google Scholar
Ohl, C.-D., Arora, M., Dijkink, R., Janve, V. & Lohse, D. 2006a Surface cleaning from laser-induced cavitation bubbles. Appl. Phys. Lett. 89 (7), 074102.CrossRefGoogle Scholar
Ohl, C.-D., Arora, M., Ikink, R., De Jong, N., Versluis, M., Delius, M. & Lohse, D. 2006b Sonoporation from jetting cavitation bubbles. Biophys. J. 91 (11), 42854295.CrossRefGoogle ScholarPubMed
Phares, D. J., Smedley, G. T. & Flagan, R. C. 2000 The wall shear stress produced by the normal impingement of a jet on a flat surface. J. Fluid Mech. 418, 351375.Google Scholar
Reuter, F. & Mettin, R. 2016 Mechanisms of single bubble cleaning. Ultrason. Sonochem. 29, 550562.Google Scholar
Rusche, H.2003 Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis, Imperial College London (University of London).Google Scholar
Schlichting, H., Gersten, K., Krause, E. & Oertel, H. 1955 Boundary-layer Theory, vol. 7. Springer.Google Scholar
Visser, C. W., Gielen, M. V, Hao, Z., Le Gac, S., Lohse, D. & Sun, C. 2015 Quantifying cell adhesion through impingement of a controlled microjet. Biophys. J. 108 (1), 2331.CrossRefGoogle ScholarPubMed
Vogel, A. & Lauterborn, W. 1988 Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 84 (2), 719731.Google Scholar
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.CrossRefGoogle Scholar
Wang, Q. 2014 Multi-oscillations of a bubble in a compressible liquid near a rigid boundary. J. Fluid Mech. 745, 509536.Google Scholar
Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12 (6), 620631.Google Scholar
Ye, T. & Bull, J. L. 2006 Microbubble expansion in a flexible tube. J. Biomech. Engng 128 (4), 554563.Google Scholar
Zijlstra, A., Janssens, T., Wostyn, K., Versluis, M., Mertens, P. W. & Lohse, D. 2009 High speed imaging of 1 MHz driven microbubbles in contact with a rigid wall. In Solid State Phenomena, vol. 145, pp. 710. Trans Tech.Google Scholar

Zeng et al. supplementary movie

Resolved flow close to the boundary during bubble collapse and re-expansions.

Download Zeng et al. supplementary movie(Video)
Video 14 MB