Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T13:49:22.476Z Has data issue: false hasContentIssue false

Wake-mediated synchronization and drafting in coupled flags

Published online by Cambridge University Press:  16 November 2009

SILAS ALBEN*
Affiliation:
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA
*
Email address for correspondence: [email protected]

Abstract

A recent experiment has shown ‘inverted drafting’ in flags: the drag force on one flag is increased by excitation from the wake of another. Here we use vortex sheet simulations to show that inverted drafting occurs when the flag wakes add coherently to form strong vortices. By contrast, normal drafting occurs for higher frequency oscillations, when the vortex wake becomes more complex and mixed on the scale of the flag. The types of drafting and dynamics (synchronization and erratic flapping) depend on the separation distance between the flags. For both tandem and side-by-side flags in synchronized flapping, the phase difference depends nearly monotonically on separation distance.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alben, S. 2008 The flapping-flag instability as a nonlinear eigenvalue problem. Phys. Fluids 20, 104106.CrossRefGoogle Scholar
Alben, S. 2009 Simulating the dynamics of flexible bodies and vortex sheets. J. Comput. Phys. 228 (7), 25872603.CrossRefGoogle Scholar
Alben, S. & Shelley, M. J. 2008 Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys. Rev. Lett. 100, 074301.CrossRefGoogle Scholar
Argentina, M. & Mahadevan, L. 2005 Fluid-flow-induced flutter of a flag. Proc. Natl Acad. Sci. USA 102, 18291834.CrossRefGoogle ScholarPubMed
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bisplinghoff, R. L. & Ashley, H. 2002 Principles of Aeroelasticity. Dover.Google Scholar
Drucker, E. G. & Lauder, G. V. 2001 Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish. J. Exp. Biol. 204 (17), 29432958.CrossRefGoogle ScholarPubMed
Eloy, C., Lagrange, R., Souilliez, C. & Schouveiler, L. 2008 Aeroelastic instability of a flexible plate in a uniform flow. J. Fluid Mech 611, 97106.CrossRefGoogle Scholar
Epureanu, B. I., Tang, L. S. & Paidoussis, M. P. 2004 Coherent structures and their influence on the dynamics of aeroelastic panels. Intl J. Non-Linear Mech. 39 (6), 977991.CrossRefGoogle Scholar
Farnell, D. J. J., David, T. & Barton, D. C. 2004 Coupled states of flapping flags. J. Fluid. Struct. 19 (1), 2936.CrossRefGoogle Scholar
Jain, A., Jones, N. P. & Scanlan, R. H. 1996 Coupled flutter and buffeting analysis of long-span bridges. J. Struct. Engng 122 (7), 716725.CrossRefGoogle Scholar
Jia, L. A. I. B., Li, F., Yin, X. I. E. Z. & Yin, X. I. E. Y. 2007 Coupling modes between two flapping filaments. J. Fluid Mech. 581, 199220.CrossRefGoogle Scholar
Krasny, R. 1986 Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65, 292313.CrossRefGoogle Scholar
Lissaman, P. B. S. & Shollenberger, C. A. 1970 Formation flight of birds. Science 168 (3934), 1003.CrossRefGoogle ScholarPubMed
Ralston, A. & Rabinowitz, P. 2001 A First Course in Numerical Analysis. Dover.Google Scholar
Ristroph, L. & Zhang, J. 2008 Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Lett. 101, 19.CrossRefGoogle ScholarPubMed
Shelley, M., Vandenberghe, N. & Zhang, J. 2005 Heavy flags undergo spontaneous oscillations in flowing water. Phys. Rev. Lett 94, 094302.CrossRefGoogle ScholarPubMed
Tang, L. & Païdoussis, M. P. 2009 The coupled dynamics of two cantilevered flexible plates in axial flow. J. Sound Vib. 323, 790801.CrossRefGoogle Scholar
Theodorsen, T. 1935 General theory of aerodynamic theory and the mechanism of flutter. Tech. Rep. 496. NACA.Google Scholar
Videler, J. J. 1993 Fish Swimming. Springer.CrossRefGoogle Scholar
Watanabe, Y., Suzuki, S., Sugihara, M. & Sueoka, Y. 2002 An experimental study of paper flutter. J. Fluids Struct. 16 (4), 529542.CrossRefGoogle Scholar
Weimerskirch, H., Martin, J., Clerquin, Y., Alexandre, P. & Jiraskova, S. 2001 Energy saving in flight formation. Nature 413 (6857), 697698.CrossRefGoogle ScholarPubMed
Zhang, J., Childress, S., Libchaber, A. & Shelley, M. 2000 Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408 (6814), 835839.CrossRefGoogle Scholar
Zhu, L. & Peskin, C. S. 2002 Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J. Comput. Phys. 179, 452468.CrossRefGoogle Scholar
Zhu, L. & Peskin, C. S. 2003 Interaction of two flapping filaments in a flowing soap film. Phys. Fluids 15, 19541960.CrossRefGoogle Scholar