Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T15:42:24.675Z Has data issue: false hasContentIssue false

Vorticity structure and evolution in a transverse jet

Published online by Cambridge University Press:  07 March 2007

YOUSSEF M. MARZOUK
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
AHMED F. GHONIEM
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

Transverse jets arise in many applications, including propulsion, effluent dispersion, oil field flows, and V/STOL aerodynamics. This study seeks a fundamental, mechanistic understanding of the structure and evolution of vorticity in the transverse jet. We develop a high-resolution three-dimensional vortex simulation of the transverse jet at large Reynolds number and consider jet-to-crossflow velocity ratios r ranging from 5 to 10. A new formulation of vorticity-flux boundary conditions accounts for the interaction of channel wall vorticity with the jet flow immediately around the orifice. We demonstrate that the nascent jet shear layer contains not only azimuthal vorticity generated in the jet pipe, but wall-normal and azimuthal perturbations resulting from the jet–crossflow interaction. This formulation also yields analytical expressions for vortex lines in the near field as a function of r.

Transformation of the cylindrical shear layer emanating from the orifice begins with axial elongation of its lee side to form sections of counter-rotating vorticity aligned with the jet trajectory. Periodic roll-up of the shear layer accompanies this deformation, creating complementary vortex arcs on the lee and windward sides of the jet. Counter-rotating vorticity then drives lee-side roll-ups in the windward direction, along the normal to the jet trajectory. Azimuthal vortex arcs of alternating sign thus approach each other on the windward boundary of the jet. Accordingly, initially planar material rings on the shear layer fold completely and assume an interlocking structure that persists for several diameters above the jet exit. Though the near field of the jet is dominated by deformation and periodic roll-up of the shear layer, the resulting counter-rotating vorticity is a pronounced feature of the mean field; in turn, the mean counter-rotation exerts a substantial influence on the deformation of the shear layer. Following the pronounced bending of the trajectory into the crossflow, we observe a sudden breakdown of near-field vortical structures into a dense distribution of smaller scales. Spatial filtering of this region reveals the persistence of counter-rotating streamwise vorticity initiated in the near field.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreopoulos, J. & Rodi, W. 1984 Experimental investigation of jets in a cross-flow. J. Fluid Mech. 138, 93127.CrossRefGoogle Scholar
Ashurst, W. T. & Meiburg, E. 1988 Three-dimensional shear layers via vortex dynamics. J. Fluid Mech. 189, 87116.CrossRefGoogle Scholar
Batchelor, G. K. 1973 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Beale, J. T. & Majda, A. 1985 High-order accurate vortex methods with explicit velocity kernels. J. Comput. Phys. 58, 188208.CrossRefGoogle Scholar
de Boor, C. 1978 A Practical Guide to Splines. Springer.Google Scholar
Broadwell, J. E. & Breidenthal, R. E. 1984 Structure and mixing of a transverse jet in incompressible-flow. J. Fluid Mech. 148, 405412.CrossRefGoogle Scholar
Chang, Y. K. & Vakili, A. D. 1995 Dynamics of vortex rings in cross-flow. Phys. Fluids 7 (7), 15831597.CrossRefGoogle Scholar
Chorin, A. J. 1973 Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785796.CrossRefGoogle Scholar
Chorin, A. J. 1993 Hairpin removal in vortex interactions II. J. Comput. Phys. 107, 19.CrossRefGoogle Scholar
Chorin, A. J. 1994 Vorticity and Turbulence. Springer.CrossRefGoogle Scholar
Chorin, A. J. 1996 Microstructure, renormalization, and more efficient vortex methods. ESAIM Proceedings: Vortex Flows and Related Numerical Methods II vol. 1, pp. 114.CrossRefGoogle Scholar
Chorin, A. J. & Hald, O. H. 1995 Vortex renormalization in three space dimensions. Phys. Rev. B 51 (17), 1196911972.CrossRefGoogle ScholarPubMed
Chorin, A. J. & Marsden, J. E. 1993 A Mathematical Introduction to Fluid Mechanics. Springer.CrossRefGoogle Scholar
Coelho, S. L. V. & Hunt, J. C. R. 1989 The dynamics of the near-field of strong jets in crossflows. J. Fluid Mech. 200, 95120.CrossRefGoogle Scholar
Cortelezzi, L. & Karagozian, A. R. 2001 On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347373.CrossRefGoogle Scholar
Cottet, G.-H. & Koumoutsakos, P. D. 2000 Vortex Methods: Theory and Practice. Cambridge University Press.CrossRefGoogle Scholar
Eiff, O. S. & Keffer, J. F. 1997 On the structures in the near-wake region of an elevated turbulent jet in a crossflow. J. Fluid Mech. 333, 161195.CrossRefGoogle Scholar
Eroglu, A. & Breidenthal, R. E. 2001 Structure, penetration, and mixing of pulsed jets in crossflow. AIAA J. 39 (3), 417423.CrossRefGoogle Scholar
Fearn, R. & Weston, R. P. 1974 Vorticity associated with a jet in a cross flow. AIAA J. 12 (12), 16661671.CrossRefGoogle Scholar
Fric, T. F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.CrossRefGoogle Scholar
Hasselbrink, E. F. & Mungal, M. G. 2001 Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets. J. Fluid Mech. 443, 125.CrossRefGoogle Scholar
Hasselbrink, E. F. & Mungal, M. G. 2001 Transverse jets and jet flames. Part 2. Velocity and OH field imaging. J. Fluid Mech. 443, 2768.CrossRefGoogle Scholar
Haven, B. A. & Kurosaka, M. 1997 Kidney and anti-kidney vortices in crossflow jets. J. Fluid Mech. 352, 2764.CrossRefGoogle Scholar
Huq, P. & Dhanak, M. R. 1996 The bifurcation of circular jets in crossflow. Phys. Fluids 8 (3), 754763.CrossRefGoogle Scholar
Kamotani, Y. & Greber, I. 1972 Experiments on a turbulent jet in a cross flow. AIAA J. 10, 14251429.CrossRefGoogle Scholar
Kamotani, Y. & Greber, I. 1974 Experiments on confined turbulent jets in cross flow. Tech. Rep. CR-2392. NASA.CrossRefGoogle Scholar
Karagozian, A. R. 1986 An analytical model for the vorticity associated with a transverse jet. AIAA J. 24, 429436.CrossRefGoogle Scholar
Karagozian, A. R., Megerian, S., Alves, L., George, M., Kelly, R. E. & M'Closkey, R. T. 2005 Control of vorticity generation in an acoustically excited jet in crossflow. AIAA Paper 2005–0303.Google Scholar
Keffer, J. F. & Baines, W. D. 1962 The round turbulent jet in a cross-wind. J. Fluid Mech. 15, 481496.CrossRefGoogle Scholar
Kelso, R. M., Lim, T. T. & Perry, A. E. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111144.CrossRefGoogle Scholar
Kelso, R. M. & Smits, A. J. 1995 Horseshoe vortex systems resulting from the interaction between a laminar boundary-layer and a transverse jet. Phys. Fluids 7 (1), 153158.CrossRefGoogle Scholar
Knio, O. M. & Ghoniem, A. F. 1990 Numerical study of a three-dimensional vortex method. J. Comput. Phys. 86, 75106.CrossRefGoogle Scholar
Krothapalli, A., Lourenco, L. & Buchlin, J. M. 1990 Separated flow upstream of a jet in a cross-flow. AIAA J. 28 (3), 414420.CrossRefGoogle Scholar
Leonard, A. 1985 Computing three-dimensional incompressible flows with vortex elements. Annual Review of Fluid Mechanics 17, 523559.CrossRefGoogle Scholar
Lim, T. T., New, T. H. & Luo, S. C. 2001 On the development of large-scale structures of a jet normal to a cross flow. Phys. Fluids 13 (3), 770775.CrossRefGoogle Scholar
Lindsay, K. & Krasny, R. 2001 A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow. J. Comput. Phys. 172 (2), 879907.CrossRefGoogle Scholar
Margason, R. J. 1993 Fifty years of jet in cross flow research. In Computational and Experimental Assessment of Jets in Cross Flow, vol. CP-534. AGARD.Google Scholar
Marzouk, Y. M. 2004 Vorticity structure and evolution in a transverse jet with new algorithms for scalable particle simulation. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Marzouk, Y. M. & Ghoniem, A. F. 2002 Mechanism of streamwise vorticity formation in a transverse jet. AIAA Paper 2002–1063.Google Scholar
Marzouk, Y. M. & Ghoniem, A. F. 2005 K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-body simulations. J. Comput. Phys. 207, 493528.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2005 Study of trajectories of jets in crossflow using direct numerical simulations. J. Fluid Mech. 530, 81100.CrossRefGoogle Scholar
Narayanan, S., Barooah, P. & Cohen, J. M. 2003 Dynamics and control of an isolated jet in crossflow. AIAA J. 41 (12), 23162330.CrossRefGoogle Scholar
Pratte, B. D. & Baines, W. D. 1967 Profiles of the round turbulent jet in a cross flow. J. Hydraul. Div, ASCE 92, 5364.CrossRefGoogle Scholar
Rivero, A., Ferre, J. A. & Giralt, F. 2001 Organized motions in a jet in crossflow. J. Fluid Mech. 444, 117149.CrossRefGoogle Scholar
Rosenhead, L. 1931 The formation of vortices from a surface of discontinuity. Proc. R. Soc. Lond. A 134, 170192.Google Scholar
Schlüter, J. U. & Schönfeld, T. 2000 LES of jets in cross flow and its application to a gas turbine burner. Flow Turbulence Combust. 65 (2), 177203.CrossRefGoogle Scholar
Smith, S. H. & Mungal, M. G. 1998 Mixing, structure, and scaling of the jet in crossflow. J. Fluid Mech. 357, 83122.CrossRefGoogle Scholar
Sykes, R. I., Lewellen, W. S. & Parker, S. F. 1986 On the vorticity dynamics of a turbulent jet in a cross-flow. J. Fluid Mech. 168, 393413.CrossRefGoogle Scholar
Wang, H. Y. 1998 Short wave instability on vortex filaments. Phys. Rev. Lett. 80 (21), 46654668.CrossRefGoogle Scholar
Wee, D. & Ghoniem, A. F. 2006 Modified interpolation kernels for diffusion and remeshing in vortex methods. J. Comput. Phys. 213 (1), 239263.CrossRefGoogle Scholar
Wee, D., Marzouk, Y. M. & Ghoniem, A. F. 2005 Lagrangian simulation of a jet in crossflow at a finite Reynolds number. AIAA Paper 2005–0291.Google Scholar
Williamson, C. H. K., Leweke, T. & Miller, G. D. 2000 Fundamental instabilities in spatially-developing wing wakes and temporally-developing vortex pairs. In Turbulence Structure and Vortex Dynamics (ed. Hunt, J. C. R. & Vassilicos, J. C.), pp. 83103. Cambridge University Press.Google Scholar
Winckelmans, G. S. & Leonard, A. 1993 Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows. J. Comput. Phys. 109 (2), 247273.CrossRefGoogle Scholar
Yuan, L. L. & Street, R. L. 1998 Trajectory and entrainment of a round jet in crossflow. Phys. Fluids 10 (9), 23232335.CrossRefGoogle Scholar
Yuan, L. L., Street, R. L. & Ferziger, J. H. 1999 Large-eddy simulations of a round jet in crossflow. J. Fluid Mech. 379, 71104.CrossRefGoogle Scholar
Zaman, K. B. M. Q. & Foss, J. K. 1997 The effect of vortex generators on a jet in a cross-flow. Phys. Fluids 9 (1), 106114.CrossRefGoogle Scholar