Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-19T06:13:10.188Z Has data issue: false hasContentIssue false

Universal correlation for the rise velocity of long gas bubbles in round pipes

Published online by Cambridge University Press:  22 October 2003

FLAVIA VIANA
Affiliation:
PDVSA-Intevep. Los Teques, Edo. Miranda, 1201. Venezuela
RAIMUNDO PARDO
Affiliation:
PDVSA-Intevep. Los Teques, Edo. Miranda, 1201. Venezuela
RODOLFO YÁNEZ
Affiliation:
PDVSA-Intevep. Los Teques, Edo. Miranda, 1201. Venezuela
JOSÉ L. TRALLERO
Affiliation:
PDVSA-Intevep. Los Teques, Edo. Miranda, 1201. Venezuela
DANIEL D. JOSEPH
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA

Abstract

We collected all of the published data we could find on the rise velocity of long gas bubbles in stagnant fluids contained in circular tubes. Data from 255 experiments from the literature and seven new experiments at PDVSA Intevep for fluids with viscosities ranging from 1 mPa s up to 3900 mPa s were assembled on spread sheets and processed in log–log plots of the normalized rise velocity, $\hbox{\it Fr} \,{=}\,U/(gD)^{1/2}$ Froude velocity vs. buoyancy Reynolds number, $R\,{=}\,(D^{3}g (\rho_{l}-\rho_{g}) \rho_{l})^{1/2}/\mu $ for fixed ranges of the Eötvös number, $\hbox{\it Eo}\,{=}\,g\rho_{l}D^{2}/\sigma $ where $D$ is the pipe diameter, $\rho_{l}$, $\rho_{g}$ and $\sigma$ are densities and surface tension. The plots give rise to power laws in $Eo$; the composition of these separate power laws emerge as bi-power laws for two separate flow regions for large and small buoyancy Reynolds. For large $R$ ($>200$) we find \[\hbox{\it Fr} = {0.34}/(1+3805/\hbox{\it Eo}^{3.06})^{0.58}.\] For small $R$ ($<10$) we find \[ \hbox{\it Fr} = \frac{9.494\times 10^{-3}}{({1+{6197}/\hbox{\it Eo}^{2.561}})^{0.5793}}R^{1.026}.\] The flat region for high buoyancy Reynolds number and sloped region for low buoyancy Reynolds number is separated by a transition region ($10\,{<}\,R\,{<}\, 200$) which we describe by fitting the data to a logistic dose curve. Repeated application of logistic dose curves leads to a composition of rational fractions of rational fractions of power laws. This leads to the following universal correlation: \[ \hbox{\it Fr} = L[{R;A,B,C,G}] \equiv \frac{A}{({1+({{R}/{B}})^C})^G} \] where \[ A = L[\hbox{\it Eo};a,b,c,d],\quad B = L[\hbox{\it Eo};e,f,g,h],\quad C = L[\hbox{\it Eo};i,j,k,l],\quad G = m/C \] and the parameters ($a, b,\ldots,l$) are \begin{eqnarray*} &&\hspace*{-5pt}a \hspace*{-0.8pt}\,{=}\,\hspace*{-0.8pt} 0.34;\quad b\hspace*{-0.8pt} \,{=}\,\hspace*{-0.8pt} 14.793;\quad c\hspace*{-0.8pt} \,{=}\,\hspace*{-0.6pt}{-}3.06;\quad d\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}0.58;\quad e\hspace*{-0.6pt} \,{=}\,\hspace*{-0.6pt} 31.08;\quad f\hspace*{-0.6pt} \,{=}\, \hspace*{-0.6pt}29.868;\quad g\hspace*{-0.6pt}\,{ =}\,\hspace*{-0.6pt}{ -}1.96;\\ &&\hspace*{-5pt}h = -0.49;\quad i = -1.45;\quad j = 24.867;\quad k = -9.93;\quad l = -0.094;\quad m = -1.0295.\end{eqnarray*} The literature on this subject is reviewed together with a summary of previous methods of prediction. New data and photographs collected at PDVSA-Intevep on the rise of Taylor bubbles is presented.

Type
Papers
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Supplementary material: PDF

Viana appendix

Viana appendix

Download Viana appendix(PDF)
PDF 116.2 KB