Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T04:20:49.379Z Has data issue: false hasContentIssue false

Understanding of turbulence modulation and particle response in a particle-laden jet from direct numerical simulations

Published online by Cambridge University Press:  13 October 2022

Hua Zhou*
Affiliation:
School of Mechanical and Manufacturing Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
Evatt R. Hawkes
Affiliation:
School of Mechanical and Manufacturing Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
Timothy C.W. Lau
Affiliation:
Center for Energy Technology, School of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia UniSA STEM, The University of South Australia, Adelaide, SA 5095, Australia
Rey Chin
Affiliation:
Center for Energy Technology, School of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
Graham J. Nathan
Affiliation:
Center for Energy Technology, School of Mechanical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
Haiou Wang
Affiliation:
School of Mechanical and Manufacturing Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
*
Email address for correspondence: [email protected]

Abstract

Point-particle direct numerical simulations have been employed to quantify the turbulence modulation and particle responses in a turbulent particle-laden jet in the two-way coupled regime with an inlet Reynolds number based on bulk velocity and jet diameter $({D_j})$ of ~10 000. The investigation focuses on three cases with inlet bulk Stokes numbers of 0.3, 1.4 and 11.2. Special care is taken to account for the particle–gas slip velocity and non-uniform particle concentrations at the nozzle outlet, enabling a reasonable prediction of particle velocity and concentration fields. Turbulence modulation is quantified by the variation of the gas-phase turbulent kinetic energy (TKE). The presence of the particle phase is found to damp the gas-phase TKE in the near-field region within $5{D_j}$ from the inlet but subsequently increases the TKE in the intermediate region of (5–20)Dj. An analysis of the gas-phase TKE transport equation reveals that the direct impact of the particle phase is to dissipate TKE via the particle-induced source term. However, the finite inertia of the particle phase affects the gas-phase velocity gradients, which indirectly affects the TKE production and dissipation, leading to the observed TKE attenuation and enhancement. Particle response to the gas-phase flow is quantified. Particles are found to exhibit notably stronger response to the gas-phase axial velocity than to the radial velocity. A new dimensionless figure is presented that collapses both the axial and radial components of the particle response as a function of the local Stokes number based on their respective integral length scales.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aísa, L., Garcia, J.A., Cerecedo, L.M., García Palacín, I. & Calvo, E. 2002 Particle concentration and local mass flux measurements in two-phase flows with PDA. Application to a study on the dispersion of spherical particles in a turbulent air jet. Intl J. Multiphase Flow 28, 301324.CrossRefGoogle Scholar
Armenio, V. & Fiorotto, V. 2001 The importance of the forces acting on particles in turbulent flows. Phys. Fluids 13, 24372440.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Ball, C.G., Fellouah, H. & Pollard, A. 2012 The flow field in turbulent round free jets. Prog. Aerosp. Sci. 50, 126.CrossRefGoogle Scholar
Basset, A.B. 1888 On the motion of a sphere in a viscous liquid. Phil. Trans. R. Soc. Lond A 179, 4363.Google Scholar
Bewley, G.P., Chang, K. & Bodenschatz, E. 2012 On integral length scales in anisotropic turbulence. Phys. Fluids 24, 061702.CrossRefGoogle Scholar
Birzer, C.H., Kalt, P.A.M. & Nathan, G.J. 2012 The influences of particle mass loading on mean and instantaneous particle distributions in precessing jet flows. Intl J. Multiphase Flow 41, 1322.CrossRefGoogle Scholar
Bogusławski, L. & Popiel, C.O. 1979 Flow structure of the free round turbulent jet in the initial region. J. Fluid Mech. 90, 531539.CrossRefGoogle Scholar
Casciola, C.M., Gualtieri, P., Picano, F., Sardina, G. & Troiani, G. 2010 Dynamics of inertial particles in free jets. Phys. Scr. T142, 014001.CrossRefGoogle Scholar
Chen, J.H., et al. 2009 Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Disc. 2, 131.CrossRefGoogle Scholar
Chen, X., O'Mahony, A.P. & Barber, T. 2021 The characterization of particle number and distribution inside in-flight 3D printed droplets using a high speed droplet imaging system. J. Appl. Phys. 130, 044701.CrossRefGoogle Scholar
Chong, K.L., Ng, C.S., Hori, N., Yang, R., Verzicco, R. & Lohse, D. 2021 Extended lifetime of respiratory droplets in a turbulent vapor puff and its implications on airborne disease transmission. Phys. Rev. Lett. 126, 034502.CrossRefGoogle Scholar
Crowe, C.T., Gore, R.A. & Troutt, T.R. 1985 Particle dispersion by coherent structures in free shear flows. Particul. Sci. Technol. 3, 149158.CrossRefGoogle Scholar
Druzhinin, O.A. & Elghobashi, S. 1999 On the decay rate of isotropic turbulence laden with microparticles. Phys. Fluids 11, 602610.CrossRefGoogle Scholar
Eaton, J.K. & Fessler, J.R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
Elghobashi, S. 1991 Particle-laden turbulent flows: direct simulation and closure models. Appl. Sci. Res. 48, 301314.CrossRefGoogle Scholar
Elghobashi, S. 2006 IUTAM Symposium on Computational Approaches to Multiphase Flow, Dordrecht, pp. 3–10. Springer.Google Scholar
Elghobashi, S. & Truesdell, G.C. 1992 Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655700.CrossRefGoogle Scholar
Fan, J., Zhao, H. & Cen, K. 1992 An experimental study of two-phase turbulent coaxial jets. Exp. Fluids 13, 279287.CrossRefGoogle Scholar
Fan, J., Zhao, H. & Cen, K. 1997 Particle concentration and size measurements in two-phase turbulent coaxial jets. Chem. Engng Commun. 156, 115129.CrossRefGoogle Scholar
Ferrante, A. & Elghobashi, S. 2003 On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids 15, 315329.CrossRefGoogle Scholar
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C.M. 2013 Clustering and turbulence modulation in particle-laden shear flows. J. Fluid Mech. 715, 134162.CrossRefGoogle Scholar
Hardalupas, Y., Taylor, A.M.K.P., Whitelaw, J.H. & Weinberg, F.J. 1989 Velocity and particle-flux characteristics of turbulent particle-laden jets. Proc. R. Soc. Lond. A. 426, 3178.Google Scholar
Hetsroni, G. 1989 Particles-turbulence interaction. Intl J. Multiphase Flow 15, 735746.CrossRefGoogle Scholar
Hussein, H.J., Capp, S.P. & George, W.K. 1994 Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.CrossRefGoogle Scholar
Kennedy, C.A., Carpenter, M.H. & Lewis, R.M. 2000 Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Maths 35, 177219.CrossRefGoogle Scholar
Kontomaris, K., Hanratty, T.J. & McLaughlin, J.B. 1992 An algorithm for tracking fluid particles in a spectral simulation of turbulent channel flow. J. Comput. Phys. 103, 231242.CrossRefGoogle Scholar
Lau, T.C. & Nathan, G.J. 2014 Influence of Stokes number on the velocity and concentration distributions in particle-laden jets. J. Fluid Mech. 757, 432457.CrossRefGoogle Scholar
Lau, T.C. & Nathan, G.J. 2016 The effect of Stokes number on particle velocity and concentration distributions in a well-characterised, turbulent, co-flowing two-phase jet. J. Fluid Mech. 809, 72110.CrossRefGoogle Scholar
Lau, T.C.W., Frank, J.H. & Nathan, G.J. 2019 Resolving the three-dimensional structure of particles that are aerodynamically clustered by a turbulent flow. Phys. Fluids 31, 071702.CrossRefGoogle Scholar
Li, D., Fan, J., Luo, K. & Cen, K. 2011 Direct numerical simulation of a particle-laden low Reynolds number turbulent round jet. Intl J. Multiphase Flow 37, 539554.CrossRefGoogle Scholar
Li, D., Luo, K., Wang, Z., Xiao, W. & Fan, J. 2019 Drag enhancement and turbulence attenuation by small solid particles in an unstably stratified turbulent boundary layer. Phys. Fluids 31, 063303.Google Scholar
Longmire, E.K. & Eaton, J.K. 1992 Structure of a particle-laden round jet. J. Fluid Mech. 236, 217257.CrossRefGoogle Scholar
Mallik, A.K., Mukherjee, S. & Panchagnula, M.V. 2020 An experimental study of respiratory aerosol transport in phantom lung bronchioles. Phys. Fluids 32, 111903.CrossRefGoogle ScholarPubMed
Maxey, M.R. & Riley, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.CrossRefGoogle Scholar
McLaughlin, J.B. 1989 Aerosol particle deposition in numerically simulated channel flow. Phys. Fluids A: Fluid Dyn. 1, 12111224.CrossRefGoogle Scholar
Mi, J., Nobes, D.S. & Nathan, G.J. 2001 Influence of jet exit conditions on the passive scalar field of an axisymmetric free jet. J. Fluid Mech. 432, 91125.CrossRefGoogle Scholar
Mittal, R., Ni, R. & Seo, J.-H. 2020 The flow physics of COVID-19. J. Fluid Mech. 894, F2.CrossRefGoogle Scholar
Modarress, D., Tan, H. & Elghobashi, S. 1984 Two-component LDA measurement in a two-phase turbulent jet. AIAA J. 22, 624630.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22, 103304.CrossRefGoogle Scholar
Nathan, G.J., Jafarian, M., Dally, B.B., Saw, W.L., Ashman, P.J., Hu, E. & Steinfeld, A. 2018 Solar thermal hybrids for combustion power plant: a growing opportunity. Prog. Energy Combust. Sci. 64, 428.CrossRefGoogle Scholar
Nurkiewicz, T.R., Porter, D.W., Hubbs, A.F., Cumpston, J.L., Chen, B.T., Frazer, D.G. & Castranova, V. 2008 Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part. Fibre Toxicol. 5, 112.CrossRefGoogle ScholarPubMed
Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8, 27332755.CrossRefGoogle Scholar
Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441466.CrossRefGoogle Scholar
Pepiot, P. & Desjardins, O. 2012 Numerical analysis of the dynamics of two- and three-dimensional fluidized bed reactors using an Euler–Lagrange approach. Powder Technol. 220, 104121.CrossRefGoogle Scholar
Picano, F., Sardina, G., Gualtieri, P. & Casciola, C.M. 2010 Anomalous memory effects on transport of inertial particles in turbulent jets. Phys. Fluids 22, 051705.CrossRefGoogle Scholar
Pitts, W.M. 1991 Effects of global density ratio on the centerline mixing behavior of axisymmetric turbulent jets. Exp. Fluids 11, 125134.CrossRefGoogle Scholar
Pope, S.B. 2000. Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Riley, J.J. & Patterson, G.S. 1974 Diffusion experiments with numerically integrated isotropic turbulence. Phys. Fluids 17, 292297.CrossRefGoogle Scholar
Sakakibara, J., Wicker, R.B. & Eaton, J.K. 1996 Measurements of the particle-fluid velocity correlation and the extra dissipation in a round jet. Intl J. Multiphase Flow 22, 863881.CrossRefGoogle Scholar
Schiller, L. & Naumann, Z. 1935 A drag coefficient correlation. Z. Verein. Deutsch. Ing. 77, 318320.Google Scholar
Squires, K.D. & Eaton, J.K. 1990 Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A: Fluid Dyn. 2, 11911203.CrossRefGoogle Scholar
Squires, K.D. & Eaton, J.K. 1991 Preferential concentration of particles by turbulence. Phys. Fluids A: Fluid Dyn. 3, 11691178.CrossRefGoogle Scholar
Sutherland, J.C. & Kennedy, C.A. 2003 Improved boundary conditions for viscous, reacting, compressible flows. J. Comput. Phys. 191, 502524.CrossRefGoogle Scholar
Tang, C.K., Wang, H., Bolla, M., Wehrfritz, A. & Hawkes, E.R. 2018 A DNS evaluation of mixing and evaporation models for TPDF modelling of nonpremixed spray flames. Proc. Combust. Inst. 37, 33633372.CrossRefGoogle Scholar
Tsuji, Y., Morikawa, Y., Tanaka, T., Karimine, K. & Nishida, S. 1988 Measurement of an axisymmetric jet laden with coarse particles. Intl J. Multiphase Flow 14, 565574.CrossRefGoogle Scholar
Vreman, A.W. 2007 Turbulence characteristics of particle-laden pipe flow. J. Fluid Mech. 584, 235279.CrossRefGoogle Scholar
Wang, H., Hawkes, E.R., Chen, J.H., Zhou, B., Li, Z. & Aldén, M. 2017 Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening. J. Fluid Mech. 815, 511536.CrossRefGoogle Scholar
Xu, G. & Antonia, R. 2002 Effect of different initial conditions on a turbulent round free jet. Exp. Fluids 33, 677683.CrossRefGoogle Scholar
Yoo, C.S., Wang, Y., Trouvé, A. & Im, H.G. 2005 Characteristic boundary conditions for direct simulations of turbulent counterflow flames. Combust. Theor. Model. 9, 617646.CrossRefGoogle Scholar
Yuu, S., Ikeda, K. & Umekage, T. 1996 Flow-field prediction and experimental verification of low Reynolds number gas-particle turbulent jets. Colloids Surf. A 109, 1327.CrossRefGoogle Scholar
Zhao, F., George, W.K. & van Wachem, B.G.M. 2015 Four-way coupled simulations of small particles in turbulent channel flow: the effects of particle shape and Stokes number. Phys. Fluids 27, 083301.CrossRefGoogle Scholar
Zhao, L., Andersson, H.I. & Gillissen, J.J.J. 2013 Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech. 715, 3259.CrossRefGoogle Scholar