Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-17T22:53:43.895Z Has data issue: false hasContentIssue false

Turbulent vortex streets and the entrainment mechanism of the turbulent wake

Published online by Cambridge University Press:  29 March 2006

Demosthenes D. Papailiou
Affiliation:
School of Aeronautics, Astronautics and Engineering Sciences, Purdue University Present address: Propulsion Research and Advanced Concepts Section, Jet Propulsion Laboratories, Pasadena, California.
Paul S. Lykoudis
Affiliation:
School of Aeronautics, Astronautics and Engineering Sciences, Purdue University

Abstract

The results of an experimental investigation of a turbulent vortex street in the range 103 [lsim ] Re [lsim ] 2 × 104 are presented. The vortex street was created by the motion of a circular cylinder in a motionless fluid (mercury). Photographs obtained showed that the turbulent street, created by the vortex shedding behind the cylinder, persisted at longer downstream distances and higher Reynolds numbers than previously reported in the literature. A theory was developed to account for the experimental measurements pertaining to the change of the geometrical characteristics, h (distance between the two rows of vortices) and α (longitudinal distance between two consecutive vortices on the same row), of the street in the downstream direction. The implications of the structure of the vortex street on the entrainment mechanism of the turbulent wake are discussed. Some observations of the flow in the formation region of the vortices are discussed in relation to existing work.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berger, E. 1964a Z. Flugwiss. 12, 41.
Berger, E. 1964b Jahrbuch. WGLR, p. 164.
Berger, E. & Wille, R. 1972 Ann. Rev. Fluid Mech. 4, 313.
Bevilaqua, P. M. & Lykoudis, P. S. 1971 A.I.A.A.J. 9, 1657.
Birkhoff, G. 1952 Proc. Natn. Acad. Sci. U.S.A. 38, 409.
Birkhoff, G. & Zarantanello, E. H. 1957 Jets, Wakes and Cavities. Academic.
Bloor, M. S. 1964 J. Fluid Mech. 19, 290.
Bloor, M. S. & Gerrard, J. H. 1966 Proc. Roy. Soc. A, 294, 319.
Corrsin, S. & Kistler, A. L. 1954 N.A.C.A. Tech. Note, no. 3133.
Domm, V. 1955 J. Aero. Sci. 22, 750.
Domm, V. 1956 Z. agnew. Math. Mech. 36, 367.
Frimberger, R. 1957 Z. Flugwiss. 5, 355.
Gaster, M. 1969 J. Fluid Mech. 38, 565.
Gaster, M. 1971 J. Fluid Mech. 46, 749.
Gerrard, J. H. 1961 J. Fluid Mech. 11, 244.
Gerrard, J. H. 1965 J. Fluid Mech. 22, 187.
Gerrard, J. H. 1966a J. Fluid Mech. 25, 143.
Gerrard, J. H. 1966b J. Fluid Mech. 25, 401.
Gerrard, J. H. 1967 Phil. Trans. A, 261, 137.
Grant, H. L. 1958 J. Fluid Mech. 4, 149.
Hamma, F. R. 1957 J. Aero. Sci. 24, 156.
Hinze, J. O. 1959 Turbulence McGraw-Hill.
Hoffman, E. R. & Joubert, P. N. 1963 J. Fluid Mech. 16, 395.
Hooker, S. G. 1936 Proc. Roy. Soc. A, 154, 67.
Humphreys, J. S. 1960 J. Fluid Mech. 9, 603.
Jones, G. W., Cincotta, J. J. & Walker, R. W. 1969 N.A.S.A. Tech. Rep. R 300.
Keefe, R. T. 1961 UTIA Rep. no. 76.
Keffer, J. F. 1965 J. Fluid Mech. 22, 135.
Kovasznay, L. S. G. 1949 Proc. Roy. Soc A, 198, 174.
Lin, C. C. 1954 Studies etc. Presented to R. von Mises, p. 170. Academic.
Marris, A. W. 1964 J. Basic Eng. 10, 185.
Mattingly, G. E. 1962 University of Maryland Tech. Note, BN295.
Morkovin, M. V. 1964 Flow around circular cylinder: a kaleidoscope of challenging fluid phenomena. ASME Fluids Eng. Div. Conf. Symp. on Fully Separated Flows. A.S.M.E.
Oswald, L. J. & Kibens, V. 1971 Department of Aerospace Engineering, University of Michigan Tech. Rep. no. 2820.
Rosenhead, L. 1953 Adv. in Appl. Mech. 3, 185.
Roshko, A. 1953 N.A.C.A. Tech. Note, no. 2913.
Roshko, A. 1954 N.A.C.A. Tech. Note, no. 3169.
Roshko, A. 1961 J. Fluid Mech. 10, 354.
Schiller, L. & Linke, W. 1933 Z. Flugtech. Motorluft, 24, 193.
Shair, F. H., Grove, A. S., Petersen, E. E. & Acrivos, A. 1963 J. Fluid Mech. 17, 546.
Strouhal, V. 1878 Ann. Phys. Chem. 5, 216.
Taneda, S. 1955 J. Phys. Soc. Japan, 11, 302.
Taneda, S. 1959 J. Phys. Soc. Japan, 14, 843.
Taneda, S. 1965 J. Phys. Soc. Japan, 20, 1714.
Taylor, G. I. 1915 Phil. Trans. A, 215, 1.
Taylor, G. I. 1932 Proc. Roy. Soc. A, 135, 685.
Timme, A. 1957 Ing. Arch. 25, 205.
Timme, A. 1958 DVL Bericht, no. 77.
Townsend, A. A. 1949 Proc. Roy. Soc. A, 197, 124.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Townsend, A. A. 1966 J. Fluid Mech. 26, 689.
Tritton, D. J. 1959 J. Fluid Mech. 6, 547.
Tritton, D. J. 1971 J. Fluid Mech. 45, 203.
Von Kármán, T. & Rubach, H. 1912 Physic, A 13, 49.
Wille, R. 1960 Adv. Appl. Mech. 6, 273.
Wille, R. 1966 Progress in Aeronautical Science, vol. 7, p. 195. Pergamon.
Wille, R. & Timme, A. 1957 Jahrbuch der Schiffbautechn. Gesellschaft, 51, 215.
Wygnanski, I. & Fielder, H. E. 1970 Boeing Scientific Research Laboratories, D1 82 0951.