Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T04:30:06.510Z Has data issue: false hasContentIssue false

Turbulent kinetic energy budget in compressible turbulent mixing layers: effects of large-scale structures

Published online by Cambridge University Press:  16 January 2025

Xiaoning Wang
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology, Shenzhen 518055, PR China
Jing Guo
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
Jianchun Wang*
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology, Shenzhen 518055, PR China
Shiyi Chen
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications, Southern University of Science and Technology, Shenzhen 518055, PR China Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, PR China
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulations of temporally developing compressible mixing layers have been performed to investigate the effects of large-scale structures (LSSs) on turbulent kinetic energy (TKE) budgets at convective Mach numbers ranging from $M_c=0.2$ to $1.8$ and at Taylor Reynolds numbers up to 290. In the core region of mixing layers, the volume fraction of low-speed LSSs decreases linearly with respect to the vertical distance at a Mach-number-independent rate. The contributions of low-speed LSSs to TKE, and its budget, including production, dissipation, pressure-strain and spatial diffusion terms, are primarily concentrated in the upper region of mixing layer. The streamwise and vertical mass flux coupling terms mainly transport TKE downwards in low-speed LSSs, and their magnitudes are comparable to the other dominant terms. Near the edges of LSSs, the sources and losses of all three components of TKE are completely different to each other, and dominated by turbulent diffusion, pressure diffusion, pressure-strain and dissipation terms. The TKE, their total variation and dissipation are significantly amplified at edges of low-speed LSSs, especially at the upper edge. This observation supports the existence of amplitude modulation exerted by the LSSs onto the near-edge small-scale structures in mixing layers. The level of amplitude modulation is strongest for the vertical velocity, followed by the streamwise velocity, and weakest for the spanwise velocity. Additionally, the amplitude modulation effect decreases significantly with increasing convective Mach number. The results on the amplitude modulation effect is helpful for developing predictive models of budget terms of TKE in mixing layers.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R.J., Meinhart, C.D. & Tonkins, C.D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Agostini, L. & Leschziner, M.a. 2014 On the influence of outer large-scale structures on near-wall turbulence in channel flow. Phys. Fluids 26 (7), 075107.CrossRefGoogle Scholar
Arun, S., Sameen, A., Srinivasan, B. & Girimaji, S.S. 2019 Topology-based characterization of compressibility effects in mixing layers. J. Fluid Mech. 874, 3875.CrossRefGoogle Scholar
Arun, S., Sameen, A., Srinivasan, B. & Girimaji, S.S. 2021 Scale-space energy density function transport equation for compressible inhomogeneous turbulent flows. J. Fluid Mech. 920, A31.CrossRefGoogle Scholar
Balsara, D.S. & Shu, C.W. 2000 Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160 (2), 405452.CrossRefGoogle Scholar
Baltzer, J.R., Adrian, R.J. & Wu, X. 2013 Structural organization of large and very large scales in turbulent pipe flow simulation. J. Fluid Mech. 720, 236279.CrossRefGoogle Scholar
Bandyopadhyay, P.R. & Hussain, A.K.M.F. 1984 The coupling between scales in shear flows. Phys. Fluids 27 (9), 22212228.CrossRefGoogle Scholar
Bolotnov, I.A., Lahey, R.T., Drew, D.A., Jansen, K.E. & Oberai, A.A. 2010 Spectral analysis of turbulence based on the DNS of a channel flow. Comput. Fluids 39 (4), 640655.CrossRefGoogle Scholar
Bross, M., Scharnowski, S. & Kähler, C.J. 2021 Large-scale coherent structures in compressible turbulent boundary layers. J. Fluid Mech. 911, A2.CrossRefGoogle Scholar
Chan, C.I. & Chin, R.C. 2022 Investigation of the influence of miniature vortex generators on the large-scale motions of a turbulent boundary layer. J. Fluid Mech. 932, A29.CrossRefGoogle Scholar
De Silva, C.M., Philip, J., Hutchins, N. & Marusic, I. 2017 Interfaces of uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 820, 451478.CrossRefGoogle Scholar
Deng, S., Pan, C., Wang, J. & He, G. 2018 On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number. J. Fluid Mech. 844, 635668.CrossRefGoogle Scholar
Dennis, D.J.C. & Nickels, T.B. 2011 Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J. Fluid Mech. 673, 218244.CrossRefGoogle Scholar
Domaradzki, J.A., Liu, W., Härtel, C. & Kleiser, L. 1994 Energy transfer in numerically simulated wall-bounded turbulent flows. Phys. Fluids 6 (4), 15831599.CrossRefGoogle Scholar
Eisma, J., Westerweel, J., Ooms, G. & Elsinga, G.E. 2015 Interfaces and internal layers in a turbulent boundary layer. Phys. Fluids 27 (5), 055103.CrossRefGoogle Scholar
Fan, D., Xu, J., Yao, M.X. & Hickey, J.-P. 2019 On the detection of internal interfacial layers in turbulent flows. J. Fluid Mech. 872, 198217.CrossRefGoogle Scholar
Fan, Y. & Li, W. 2023 Spectral analysis of turbulence kinetic and internal energy budgets in hypersonic turbulent boundary layers. Phys. Rev. Fluids 8 (4), 044604.CrossRefGoogle Scholar
Fiscaletti, D., Ganapathisubramani, B. & Elsinga, G.E. 2015 Amplitude and frequency modulation of the small scales in a jet. J. Fluid Mech. 772, 756783.CrossRefGoogle Scholar
Ganapathisubramani, B., Hutchins, N., Hambleton, W.T., Longmire, E.K. & Marusic, I. 2005 Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J. Fluid Mech. 524, 5780.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Inoue, M., Mathis, R., Marusic, I. & Pullin, D.I. 2012 Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations. Phys. Fluids 24 (7), 075102.CrossRefGoogle Scholar
Jahanbakhshi, R. & Madnia, C.K. 2016 Entrainment in a compressible turbulent shear layer. J. Fluid Mech. 797 (2016), 564603.CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Kawata, T. & Tsukahara, T. 2022 Spectral analysis on transport budgets of turbulent heat fluxes in plane Couette turbulence. Energies 15 (14), 127.CrossRefGoogle Scholar
Kim, K.C. & Adrian, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.CrossRefGoogle Scholar
Klein, M., Sadiki, A. & Janicka, J. 2003 A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186 (2), 652665.CrossRefGoogle Scholar
Krug, D., Holzner, M., Lüthi, B., Wolf, M., Kinzelbach, W. & Tsinober, A. 2015 The turbulent/non-turbulent interface in an inclined dense gravity current. J. Fluid Mech. 765, 303324.CrossRefGoogle Scholar
Lee, J., Ahn, J. & Sung, H.J. 2015 Comparison of large- and very-large-scale motions in turbulent pipe and channel flows. Phys. Fluids 27 (2), 025101.CrossRefGoogle Scholar
Lee, J., Lee, J.H., Choi, J.-I. & Sung, H.J. 2014 Spatial organization of large- and very-large-scale motions in a turbulent channel flow. J. Fluid Mech. 749, 818840.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to $Re_\tau = 5200$. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2019 Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number. J. Fluid Mech. 860, 886938.CrossRefGoogle Scholar
Lele, S.K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Li, D., Peyvan, A., Ghiasi, Z., Komperda, J. & Mashayek, F. 2021 Compressibility effects on energy exchange mechanisms in a spatially developing plane free shear layer. J. Fluid Mech. 910, A9.CrossRefGoogle Scholar
Liu, H., Wang, G. & Zheng, X. 2019 Amplitude modulation between multi-scale turbulent motions in high-Reynolds-number atmospheric surface layers. J. Fluid Mech. 861, 585607.CrossRefGoogle Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to $Re_\tau = 4200$. Phys. Fluids 26 (1), 011702.CrossRefGoogle Scholar
Lumley, J.L. 1964 Spectral energy budget in wall turbulence. Phys. Fluids 7 (2), 190196.CrossRefGoogle Scholar
Mahle, I. 2007 Direct and large-eddy simulation of inert and reacting compressible turbulent shear layers. PhD thesis, Technische Universität München, Germany.Google Scholar
Marusic, I., Mathis, R. & Hutchins, N. 2010 Predictive model for wall-bounded turbulent flow. Science 329 (5988), 193196.CrossRefGoogle ScholarPubMed
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.CrossRefGoogle Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2011 a A predictive inner–outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech. 681, 537566.CrossRefGoogle Scholar
Mathis, R., Marusic, I., Hutchins, N. & Sreenivasan, K.R. 2011 b The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers. Phys. Fluids 23 (12), 121702.CrossRefGoogle Scholar
Messersmith, N.L. & Dutton, J.C. 1996 Characteristic features of large structures in compressible mixing layers. AIAA J. 34 (9), 18141821.CrossRefGoogle Scholar
Mizuno, Y. 2016 Spectra of energy transport in turbulent channel flows for moderate Reynolds numbers. J. Fluid Mech. 805, 171187.CrossRefGoogle Scholar
Monty, J.P., Hutchins, N., NG, H.C.H., Marusic, I. & Chong, M.S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.CrossRefGoogle Scholar
Monty, J.P., Stewart, J.A., Williams, R.C. & Chong, M.S. 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.CrossRefGoogle Scholar
Nekkanti, A., Nidhan, S., Schmidt, O.T. & Sarkar, S. 2023 Large-scale streaks in a turbulent bluff body wake. J. Fluid Mech. 974, A47.CrossRefGoogle Scholar
Nogueira, P.A.S., Cavalieri, A.V.G., Jordan, P. & Jaunet, V. 2019 Large-scale streaky structures in turbulent jets. J. Fluid Mech. 873, 211237.CrossRefGoogle Scholar
O'Neill, P., Nicolaides, D., Honnery, D.R. & Soria, J. 2004 Autocorrelation functions and the determination of integral length with reference to experimental and numerical data. In Proceedings of the Fifteenth Australasian Fluid Mechanics Conference (ed. M. Behnia, W. Lin & G.D. McBain), pp. 1–4. University of Sydney.Google Scholar
Pantano, C. & Sarkar, S. 2002 A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329371.CrossRefGoogle Scholar
Philip, J., Meneveau, C., de Silva, C.M. & Marusic, I. 2014 Multiscale analysis of fluxes at the turbulent/non-turbulent interface in high Reynolds number boundary layers. Phys. Fluids 26 (1), 015105.CrossRefGoogle Scholar
Pirozzoli, S. & Bernardini, M. 2011 Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120168.CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M., Marié, S. & Grasso, F. 2015 Early evolution of the compressible mixing layer issued from two turbulent streams. J. Fluid Mech. 777, 196218.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Ragab, S.A. & Wu, J.L. 1989 Linear instabilities in two-dimensional compressible mixing layers. Phys. Fluids A 1 (6), 957966.CrossRefGoogle Scholar
Reckinger, S.J., Livescu, D. & Vasilyev, O.V. 2016 Comprehensive numerical methodology for direct numerical simulations of compressible Rayleigh–Taylor instability. J. Comput. Phys. 313, 181208.CrossRefGoogle Scholar
Reuther, N. & Kähler, C.J. 2020 Effect of the intermittency dynamics on single and multipoint statistics of turbulent boundary layers. J. Fluid Mech. 897, A11.CrossRefGoogle Scholar
Rogers, M.M. & Moser, R.D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6 (2), 903923.CrossRefGoogle Scholar
Rossmann, T., Mungal, M.G. & Hanson, R.K. 2002 Evolution and growth of large-scale structures in high compressibility mixing layers. J. Turbul. 3, 2729.CrossRefGoogle Scholar
Samie, M., Aparece-Scutariu, V., Lavoie, P., Shin, D.-h. & Pollard, A. 2022 Three-dimensional large-scale and very-large-scale coherent structures in a turbulent axisymmetric jet. J. Fluid Mech. 948, A29.CrossRefGoogle Scholar
Samie, M., Lavoie, P. & Pollard, A. 2021 Quantifying eddy structures and very-large-scale motions in turbulent round jets. J. Fluid Mech. 916, A2.CrossRefGoogle Scholar
Samtaney, R., Pullin, D.I. & Kosović, B. 2001 Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13 (5), 14151430.CrossRefGoogle Scholar
Sarkar, S. 1995 The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163186.CrossRefGoogle Scholar
da Silva, C.B., Hunt, J.C.R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46 (1), 567590.CrossRefGoogle Scholar
Smits, A.J., McKeon, B.J. & Marusic, I. 2011 High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43 (1), 353375.CrossRefGoogle Scholar
Sutherland, W. 1893 LII. The viscosity of gases and molecular force. Lond. Edinb. Dub. Phil. Mag. J. Sci. 36 (223), 507531.CrossRefGoogle Scholar
Talluru, K.M., Baidya, R., Hutchins, N. & Marusic, I. 2014 Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech. 746, R1.CrossRefGoogle Scholar
Townsend, A.A.R. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Vadrot, A., Giauque, A. & Corre, C. 2021 Direct numerical simulations of temporal compressible mixing layers in a Bethe–Zel'dovich–Thompson dense gas: influence of the convective Mach number. J. Fluid Mech. 922, A5.CrossRefGoogle Scholar
Vaghefi, N.S. 2014 Simulation and modeling of compressible turbulent mixing layer. PhD thesis, State University of New York, New York, USA.Google Scholar
Vaghefi, N.S. & Madnia, C.K. 2015 Local flow topology and velocity gradient invariants in compressible turbulent mixing layer. J. Fluid Mech. 774, 6794.CrossRefGoogle Scholar
Vreman, A.W., Sandham, N.D. & Luo, K.H. 1996 Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech. 320, 235258.CrossRefGoogle Scholar
Wallace, J.M. 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48 (1), 131158.CrossRefGoogle Scholar
Wang, G. & Zheng, X. 2016 Very large scale motions in the atmospheric surface layer: a field investigation. J. Fluid Mech. 802, 464489.CrossRefGoogle Scholar
Wang, J., Shi, Y., Wang, L.-p., Xiao, Z., He, X.T. & Chen, S. 2012 Effect of compressibility on the small-scale structures in isotropic turbulence. J. Fluid Mech. 713, 588631.CrossRefGoogle Scholar
Wang, J., Wang, L., Xiao, Z., Shi, Y. & Chen, S. 2010 A hybrid numerical simulation of isotropic compressible turbulence. J. Comput. Phys. 229 (13), 52575279.CrossRefGoogle Scholar
Wang, X., Guo, J., Wang, J. & Chen, S. 2024 Interfaces of high- and low-speed large-scale structures in compressible turbulent mixing layers: compressibility effects and structures. J. Fluid Mech. 981, A6.CrossRefGoogle Scholar
Wang, X., Wang, J. & Chen, S. 2022 Compressibility effects on statistics and coherent structures of compressible turbulent mixing layers. J. Fluid Mech. 947, A38.CrossRefGoogle Scholar
Wang, X., Wang, J., Li, H. & Chen, S. 2021 Kinetic energy transfer in compressible homogeneous anisotropic turbulence. Phys. Rev. Fluids 6 (6), 064601.CrossRefGoogle Scholar
Watanabe, T. & Nagata, K. 2021 Large-scale characteristics of a stably stratified turbulent shear layer. J. Fluid. Mech. 927, A27.CrossRefGoogle Scholar
Watanabe, T., Riley, J.J., Nagata, K., Matsuda, K. & Onishi, R. 2019 Hairpin vortices and highly elongated flow structures in a stably stratified shear layer. J. Fluid Mech. 878, 3761.CrossRefGoogle Scholar
Watanabe, T., Zhang, X. & Nagata, K. 2018 Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers. Phys. Fluids 30 (3), 035102.CrossRefGoogle Scholar
Westerweel, J., Fukushima, C., Pedersen, J.M. & Hunt, J.C.R. 2005 Mechanics of the turbulent-nonturbulent interface of a jet. Phys. Rev. Lett. 95 (17), 174501.CrossRefGoogle ScholarPubMed
Yu, J.-L. & Lu, X.-Y. 2020 Subgrid effects on the filtered velocity gradient dynamics in compressible turbulence. J. Fluid Mech. 892, A24.CrossRefGoogle Scholar
Yu, M. & Xu, C. 2022 Predictive models for near-wall velocity and temperature fluctuations in supersonic wall-bounded turbulence. J. Fluid Mech. 937, A32.CrossRefGoogle Scholar
Zhou, Q., He, F. & Shen, M.Y. 2012 Direct numerical simulation of a spatially developing compressible plane mixing layer: flow structures and mean flow properties. J. Fluid Mech. 711, 437468.CrossRefGoogle Scholar