Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-17T18:32:10.945Z Has data issue: false hasContentIssue false

Turbulent dynamo action at low magnetic Reynolds number

Published online by Cambridge University Press:  29 March 2006

H. K. Moffatt
Affiliation:
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, U.K.

Abstract

The effect of turbulence on a magnetic field whose length-scale L is initially large compared with the scale l of the turbulence is considered. There are no external sources for the field, and in the absence of turbulence it decays by ohmic dissipation. It is assumed that the magnetic Reynolds number Rm = u0l/λ (where u0 is the root-mean-square velocity and λ the magnetic diffusivity) is small. It is shown that to lowest order in the small quantities l/L and Rm, isotropic turbulence has no effect on the large-scale field; but that turbulence that lacks reflexional symmetry is capable of amplifying Fourier components of the field on length scales of order Rm−2l and greater. In the case of turbulence whose statistical properties are invariant under rotation of the axes of reference, but not under reflexions in a point, it is shown that the magnetic energy density of a magnetic field which is initially a homogeneous random function of position with a particularly simple spectrum ultimately increases as t−½exp (α2t/2λ3) where α(= O(u02l)) is a certain linear functional of the spectrum tensor of the turbulence. An analogous result is obtained for an initially localized field.

Type
Research Article
Copyright
© 1970 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1950 On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. Roy. Soc. A 201, 405.Google Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Biermann, L. & Schluter, A. 1950 Interstellar Magnetfelder. Z. Naturf. 5a, 237.Google Scholar
Kraichnan, R. H. & Nagarajan, S. 1967 Growth of turbulent magnetic fields. Phys. Fluids, 10, 859.Google Scholar
Krause, F. 1968 Zum Anfangswertproblem der magnetohydrodynamischen Induktions-gleichung. Z. ang. Math. Mech. 48, 333.Google Scholar
Moffatt, H. K. 1961 Turbulence in conducting fluids. La Mechanique de la Turbulence, p. 395. Paris: C.N.R.S.
Moffatt, H. K. 1968 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117.Google Scholar
Phillips, O. M. 1956 The final period of decay on non-homogeneous turbulence. Proc. Camb. Phil. Soc. 52, 135.Google Scholar
Rädler, K.-H. 1968a Zur Elektrodynamik turbulent bewegter leitender Medien. Parts I and II. Z. Naturf. 23a, 1841.Google Scholar
Roberts, G. O. 1969 Periodic Dynamos. Ph.D. thesis, Cambridge University.
Saffman, P. G. 1963 On the fine-scale structure of vector fields convected by a turbulent fluid. J. Fluid Mech. 16, 545.Google Scholar
Syrovatsky, C. J. 1957 Magnetohydrodynamics. Uspekhi Fiz. Nauk, 62, 247.Google Scholar
Steenbeck, M., Krause, F. & Rädler, K.-H. 1966 Berechnung der mittleren Lorentz Feldstärke v → B für ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinflusster Bewegung. Z. Naturf. 21a, 369.Google Scholar
Steenbeck, M. & Krause, F. 1966 Erklärung stellarer und planetarer Magnetfelder durch einen turbulenzbedingten Dynamomechanismus. Z. Naturf. 21a, 1285.Google Scholar
Steenbeck, M. & Krause, F. 1967 Die Enstchung stellarer und planetarer Magnetfelder als Folge turbulenter materiebewegung. Magnitnaja gidrodinamika, 3, 19.Google Scholar