Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-19T10:51:29.287Z Has data issue: false hasContentIssue false

Turbulence spectra from the viscous sublayer and buffer layer at the ocean floor

Published online by Cambridge University Press:  20 April 2006

T. M. C. Hriss
Affiliation:
School of Oceanography, Oregon State University, Corvallis, Oregon 97331 Present address: Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1.
D. R. Caldwell
Affiliation:
School of Oceanography, Oregon State University, Corvallis, Oregon 97331

Abstract

An experiment conducted on the Oregon continental shelf has provided measurements of velocity fluctuations in the viscous sublayer and buffer layer of the boundary-layer flow. Spectra from the viscous sublayer collapse considerably when scaled as suggested by Bakewell & Lumley (1967), and buffer-layer spectra collapse reasonably well with laboratory spectra when the scaling customarily used in the logarithmic layer is applied. However, in spite of the usefulness of the spectral scaling, the scaled sublayer and buffer-layer spectra from the ocean floor fall below the scaled laboratory spectra in the energy-containing portion of the spectrum, perhaps because the sea floor is not perfectly planar.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreopoulos, J. & Wood, D. H. 1982 The response of a turbulent boundary layer to a short length of surface roughness. J. Fluid Mech. 118, 143164.Google Scholar
Antonia, R. A. & Luxton, R. E. 1972 The response of a turbulent boundary layer to a step change in surface roughness. Part 2. Rough-to-smooth. J. Fluid Mech. 53, 737757.Google Scholar
Bath, M. 1974 Spectral Analysis in Geophysics. Elsevier.
Bakewell, H. P. & Lumley, J. L. 1967 Viscous sublayer and adjacent wall region in turbulent pipe flow. Phys. Fluids 10, 18801889.Google Scholar
Blackwelder, R. F. & Kaplan, R. E. 1976 On the wall structure of the turbulent boundary layer. J. Fluid Mech. 76, 89112.Google Scholar
Blackwelder, R. F. & Haritonidis, J. H. 1983 Scaling of the bursting frequency in turbulent boundary layers. J. Fluid Mech. 132, 87104.Google Scholar
Caldwell, D. R. 1978 Variability of the bottom mixed layer on the Oregon shelf. Deep-Sea Res. 25, 12351244.Google Scholar
Caldwell, D. R. & Chriss, T. M. 1979 The viscous sublayer at the sea floor. Science 205, 11311132.Google Scholar
Caldwell, D. R. & Dillon, T. M. 1981 An oceanic microstructure measuring system. Oregon State Univ., School of Oceanogr. Ref. 81–10.Google Scholar
Chen, C. K. & Roberson, J. A. 1974 Turbulence in wakes of roughness elements. J. Hydraul. Div. ASCE 100, 5367.Google Scholar
Chriss, T. M. & Caldwell, D. R. 1982 Evidence for the influence of form drag on bottom boundary layer flow. J. Geophys. Res. 87, 41484154.Google Scholar
Chriss, T. M. & Caldwell, D. R. 1983 Universal similarity and the thickness of the viscous sublayer at the ocean floor. J. Geophys. Res. in press.Google Scholar
Coantic, M. 1966 Contribution à l'étude de la structure de la turbulence dans une conduite de section circulaire. Thèse, doctorat d'état des sciences physiques, Université d'Aix-Marseille, Marseille.
Coantic, M. 1967 Evolution, en fonction du nombre de Reynolds, de la distribution des vitesses moyennes et turbulentes dans une conduite. C. r. Acad. Sci. Paris 264A, 849852.Google Scholar
Comte-Bellot, G. 1965 Ecoulement turbulent entre deux parois parallèles. Publ. Sci. Tech. Min. Air no. 149.Google Scholar
Dillon, T. M. & Caldwell, D. R. 1980 The Batchelor spectrum and dissipation in the upper ocean. J. Geophys. Res. 85, 19101916.Google Scholar
Eckelmann, H. 1974 The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J. Fluid Mech. 65, 439459.Google Scholar
Fortuna, G. & Hanratty, T. J. 1971 Frequency response of the boundary layer on wall transfer probes. Intl J. Heat Mass Transfer 14, 14991507.Google Scholar
Hanratty, T. J. 1967 Study of turbulence close to a solid wall. Phys. Fluids Suppl. 10, S126S133.Google Scholar
Hanratty, T. J., Chorn, L. G. & Hatziavramidis, D. T. 1977 Turbulent fluctuations in the viscous wall region for Newtonian and drag reducing fluids. Phys. Fluids suppl. 20, S112S119.Google Scholar
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50, 133160.Google Scholar
Klebanoff, P. S. 1954 Characteristics in a boundary layer with zero pressure gradient. NACA TN 3187.Google Scholar
Kreplin, H. P. & Eckelmann, H. 1979 Behavior of the three fluctuating components in the wall region of turbulent channel flow. Phys. Fluids 22, 12331239.Google Scholar
Laufer, J. 1951 Investigation of turbulent flow in a two-dimensional channel. NACA TR 1053.Google Scholar
Laufer, J. 1954 The structure of turbulence in fully developed pipe flow. NACA TR 1174.Google Scholar
Laufer, J. & Badri Narayanan, M. A. 1971 Mean period of the turbulent production mechanism in a boundary layer. Phys. Fluids 14, 182183.Google Scholar
Mitchell, J. E. & Hanratty, T. J. 1966 A study of turbulence at the wall using an electrochemical wall shear-stress meter. J. Fluid Mech. 26, 199221.Google Scholar
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics, vol. 1. MIT Press.
Mulhearn, P. J. 1978 A wind-tunnel boundary-layer study of the effects of a surface roughness change: rough to smooth. Boundary-Layer Met. 15, 330.Google Scholar
Newberger, P. A. & Caldwell, D. R. 1981 Mixing and the bottom nepheloid layer. Mar. Geol. 41, 321336.Google Scholar
Panofsky, H. A., Larko, D., Lipschutz, R., Stone, G., Bradley, E. F., Bowen, A. J. & Hojstrup, J. 1982 Spectra of velocity components over complex terrain. Q. J. R. Met. Soc. 108, 215230.Google Scholar
Py, B. 1973 Etude tridimensionnelle de la sous-couche visqueuse dans une veine rectangulaire par des mesures de transfert de matière en paroi. Intl J. Heat Mass Transfer 16, 129144.Google Scholar
Rao, K. N., Narasimha, R. & Badri Narayanan, M. A. 1971 The ‘bursting’ phenomenon in a turbulent boundary layer. J. Fluid Mech. 48, 339352.Google Scholar
Runge, E. J. 1966 Continental shelf sediments, Columbia River to Cape Blanco, Oregon. Ph.D. thesis, Oregon State University, Corvallis.
Sreenivasan, K. R. & Antonia, R. A. 1977 Properties of wall shear stress fluctuations in a turbulent duct flow. Trans. ASME E: J. Appl. Mech. 44, 389395.Google Scholar
Ueda, H. & Hinze, J. O. 1975 Fine-structure turbulence in the wall region of a turbulent boundary layer. J. Fluid Mech. 67, 125143.Google Scholar
Wallace, J. M., Brodkey, R. S. & Eckelmann, H. 1977 Pattern-recognized structures in bounded turbulent shear flows. J. Fluid Mech. 83, 673693.Google Scholar
Zaric, Z. 1974 Statistical analysis of wall turbulence phenomena. In Turbulent Diffusion in Environmental Pollution (ed. F. N. Frenkiel & R. E. Munn); Adv. Geophys. 18 A, 249261.