Published online by Cambridge University Press: 13 October 2017
The transient dynamics of stirred tanks whose impeller speed undergoes smooth or step changes is investigated. First, a low-order model is developed, linking the impeller torque with the ‘extent’ of the solid-body rotation in the tank, derived from an angular momentum balance in a control volume around the impeller. Utilisation of this model enables the prediction of the torque ‘spike’ appearing after an impulsive change of the shaft speed, and of the torque evolution during a quasi-steady transition. For the case of a small impulsive change in the shaft speed, a characteristic spin-up time is also proposed. Torque measurements performed in an unbaffled stirred tank show considerable agreement with the theoretical predictions.