Hostname: page-component-f554764f5-rj9fg Total loading time: 0 Render date: 2025-04-20T20:04:23.273Z Has data issue: false hasContentIssue false

Transient segregation of different density granular mixtures

Published online by Cambridge University Press:  14 April 2025

Soniya Kumawat
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
Vishnu Kumar Sahu
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
Anurag Tripathi*
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
*
Corresponding author: Anurag Tripathi, [email protected]

Abstract

We study time-dependent density segregation of granular mixtures flowing over an inclined plane. Discrete element method (DEM) simulations in a periodic box are performed for granular mixtures of same size and different density particles flowing under the influence of gravity. In addition, a continuum model is developed to solve the momentum balance equations along with the species transport equation by accounting for the inter-coupling of segregation and rheology. The particle force-based density segregation theory has been used along with the $\mu {-}I$ rheology to predict evolution of flow properties with time for binary and multicomponent mixtures. The effect of particle arrangements on the transient evolution of flow properties for three different initial configurations is investigated using both continuum and DEM simulations. Continuum predictions for various flow properties of interest such as species concentration, velocity, pressure and shear stress at different time instants are compared with DEM simulations. The results from the discrete and continuum models are found to be in good agreement with each other for well-mixed and heavy-near-base initial configurations. Kinetic theory-based predictions of segregation evolution, however, show good quantitative agreement only for the heavy-near-base configuration with a much slower evolution for the well-mixed case. Interestingly, the continuum model is unable to predict the flow evolution for the light-near-base initial configuration. DEM simulations reveal the presence of an instability driven, quick segregation for this configuration which is not predicted by the one-dimensional model and requires generalisation to three dimensions.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Andreotti, B., Forterre, Y. & Pouliquen, O. 2013 Granular Media: Between Fluid and Solid. Cambridge University Press.CrossRefGoogle Scholar
Arnarson, B.Ö. & Jenkins, J.T. 2004 Binary mixtures of inelastic spheres: simplified constitutive theory. Phys. Fluids 16 (12), 45434550.CrossRefGoogle Scholar
Asachi, M., Hassanpour, A., Ghadiri, M. & Bayly, A. 2018 Experimental evaluation of the effect of particle properties on the segregation of ternary powder mixtures. Powder Technol. 336, 240254.CrossRefGoogle Scholar
Ayeni, O.O., Wu, C.L., Joshi, J.B. & Nandakumar, K. 2015 A discrete element method study of granular segregation in non-circular rotating drums. Powder Technol. 283, 549560.CrossRefGoogle Scholar
Bancroft, R.S.J. & Johnson, C.G. 2021 Drag, diffusion and segregation in inertial granular flows. J. Fluid Mech. 924, A3.CrossRefGoogle Scholar
Barker, T., Rauter, M., Maguire, E.S.F., Johnson, C.G. & Gray, J.M.N.T. 2021 Coupling rheology and segregation in granular flows. J. Fluid Mech. 909, A22.CrossRefGoogle Scholar
Barker, T., Schaeffer, D.G., Shearer, M. & Gray, J.M.N.T. 2017 Well-posed continuum equations for granular flow with compressibility and $\mu $(I) rheology, Proc. R. Soc. A: Math. Phys. Engng Sci. 473(2201), 20160846.CrossRefGoogle ScholarPubMed
Bridgwater, J., Foo, W.S. & Stephens, D.J. 1985 Particle mixing and segregation in failure zones – theory and experiment. Powder Technol. 41 (2), 147158.CrossRefGoogle Scholar
Chand, R., Khaskheli, M.A., Qadir, A., Ge, B. & Shi, Q. 2012 Discrete particle simulation of radial segregation in horizontally rotating drum: effects of drum-length and non-rotating end-plates. Physica A: Statis. Mech. Appl. 391 (20), 45904596.CrossRefGoogle Scholar
Combarros, M., Feise, H.J., Zetzener, H. & Kwade, A. 2014 Segregation of particulate solids: experiments and DEM simulations. Particuology 12, 2532.CrossRefGoogle Scholar
Da Cruz, F., Emam, S., Prochnow, M., Roux, J.N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72 (2), 021309.CrossRefGoogle ScholarPubMed
Deng, Z., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2018 Continuum modelling of segregating tridisperse granular chute flow, Proc. R. Soc. A: Math. Phys. Engng Sci. 474(2211), 20170384.CrossRefGoogle ScholarPubMed
D’Ortona, U., Lueptow, R.M. & Thomas, N. 2024 Origin of granular axial segregation bands in a rotating tumbler: an interface-mixing driven Rayleigh–Taylor instability. Phys. Rev. Res. 6 (3), L032038.CrossRefGoogle Scholar
D’Ortona, U. & Thomas, N. 2020 Self-induced Rayleigh–Taylor instability in segregating dry granular flows. Phys. Rev. Lett. 124 (17), 178001.CrossRefGoogle ScholarPubMed
Duan, Y., Peckham, J., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2023 Designing minimally segregating granular mixtures for gravity-driven surface flows. AIChE J. 69 (4), e18032.CrossRefGoogle Scholar
Duan, Y., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2021 Modelling segregation of bidisperse granular mixtures varying simultaneously in size and density for free surface flows. J. Fluid Mech. 918, A20.CrossRefGoogle Scholar
Fan, Y., Schlick, C.P., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2014 Modelling size segregation of granular materials: the roles of segregation, advection and diffusion. J. Fluid Mech. 741, 252279.CrossRefGoogle Scholar
Fry, A.M., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2018 Effect of pressure on segregation in granular shear flows. Phys. Rev. E 97 (6), 062906.CrossRefGoogle ScholarPubMed
Fry, A.M., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2019 Diffusion, mixing, and segregation in confined granular flows. AIChE J. 65 (3), 875881.CrossRefGoogle Scholar
Gajjar, P. & Gray, J.M.N.T. 2014 Asymmetric flux models for particle-size segregation in granular avalanches. J. Fluid Mech. 757, 297329.CrossRefGoogle Scholar
Gray, J.M.N.T. 2018 Particle segregation in dense granular flows. Annu. Rev. Fluid Mech. 50 (1), 407433.CrossRefGoogle Scholar
Gray, J.M.N.T. & Ancey, C. 2011 Multi-component particle-size segregation in shallow granular avalanches. J. Fluid Mech. 678, 535588.CrossRefGoogle Scholar
Gray, J.M.N.T. & Ancey, C. 2015 Particle-size and -density segregation in granular free-surface flows. J. Fluid Mech. 779, 622668.CrossRefGoogle Scholar
Gray, J.M.N.T. & Chugunov, V.A. 2006 Particle-size segregation and diffusive remixing in shallow granular avalanches. J. Fluid Mech. 569, 365398.CrossRefGoogle Scholar
Gray, J.M.N.T. & Hutter, K. 1997 Pattern formation in granular avalanches. Continuum Mech. Therm. 9 (6), 341345.CrossRefGoogle Scholar
Gray, J.M.N.T. & Thornton, A.R. 2005 A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. A: Math. Phys. Engng Sci. 461(2057), 14471473.CrossRefGoogle Scholar
Hidalgo, R.C., Szabó, B., Gillemot, K., Börzsönyi, T. & Weinhart, T. 2018 Rheological response of nonspherical granular flows down an incline. Phys. Rev. Fluids 3 (7), 074301.CrossRefGoogle Scholar
Hsiau, S.S. & Chen, W.C. 2002 Density effect of binary mixtures on the segregation process in a vertical shaker. Adv. Powder Technol. 13 (3), 301315.CrossRefGoogle Scholar
Jain, N., Ottino, J.M. & Lueptow, R.M. 2005 Regimes of segregation and mixing in combined size and density granular systems: an experimental study. Granul. Matt. 7 (2), 6981.CrossRefGoogle Scholar
Jenkins, J.T. & Larcher, M. 2020 Segregation in a dense, inclined, granular flow with basal layering. Granul. Matt. 22 (2), 18.CrossRefGoogle Scholar
Jenkins, J.T. & Richman, M.W. 1985 Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28 (12), 34853494.CrossRefGoogle Scholar
Jha, A.K. & Puri, V.M. 2010 Percolation segregation of multi-size and multi-component particulate materials. Powder Technol. 197 (3), 274282.CrossRefGoogle Scholar
Jones, R.P., Isner, A.B., Xiao, H., Ottino, J.M., Umbanhowar, P.B. & Lueptow, R.M. 2018 Asymmetric concentration dependence of segregation fluxes in granular flows. Phys. Rev. Fluids 3 (9), 094304.CrossRefGoogle Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727730.CrossRefGoogle ScholarPubMed
Kumaran, V. 2008 Dense granular flow down an inclined plane: from kinetic theory to granular dynamics. J. Fluid Mech. 599, 121168.CrossRefGoogle Scholar
Larcher, M. & Jenkins, J.T. 2013 Segregation and mixture profiles in dense, inclined flows of two types of spheres. Phys. Fluids 25 (11), 113301.CrossRefGoogle Scholar
Larcher, M. & Jenkins, J.T. 2015 The evolution of segregation in dense inclined flows of binary mixtures of spheres. J. Fluid Mech. 782, 405429.CrossRefGoogle Scholar
Liao, C.C. 2019 Effect of dynamic properties on density-driven granular segregation in a rotating drum. Powder Technol. 345, 151158.CrossRefGoogle Scholar
Liao, C.C. & Tsai, C.C. 2020 Behavior of density-induced segregation with multi-density granular materials in a thin rotating drum. Granul. Matt. 22 (3), 19.CrossRefGoogle Scholar
Lim, E.W.C. 2016 Density segregation of dry and wet granular mixtures in vibrated beds. Adv. Powder Technol. 27 (6), 24782488.CrossRefGoogle Scholar
Liu, D., Singh, H. & Henann, D.L. 2023 Coupled continuum modelling of size segregation driven by shear-strain-rate gradients and flow in dense, bidisperse granular media. J. Fluid Mech. 976, A16.CrossRefGoogle Scholar
Maguire, E.S.F., Barker, T., Rauter, M., Johnson, C.G. & Gray, J.M.N.T. 2024 Particle-size segregation patterns in a partially filled triangular rotating drum. J. Fluid Mech. 979, A40.CrossRefGoogle Scholar
Mandal, S. & Khakhar, D.V. 2016 A study of the rheology of planar granular flow of dumbbells using discrete element method simulations. Phys. Fluids 28 (10), 103301.CrossRefGoogle Scholar
Mandal, S. & Khakhar, D.V. 2018 A study of the rheology and micro-structure of dumbbells in shear geometries. Phys. Fluids 30 (1), 013303.CrossRefGoogle Scholar
Patro, S., Tripathi, A., Kumar, S. & Majumdar, A. 2023, Unsteady granular chute flows at high inertial numbers. Phys. Rev. Fluids 8 (12), 124303. https://doi.org/10.1103/PhysRevFluids.8.124303CrossRefGoogle Scholar
Patro, S., Prasad, M., Tripathi, A., Kumar, P. & Tripathi, A. 2021 Rheology of two-dimensional granular chute flows at high inertial numbers. Phys. Fluids 33 (11), 113321.CrossRefGoogle Scholar
Pereira, G.G. & Cleary, P.W. 2017 Segregation due to particle shape of a granular mixture in a slowly rotating tumbler. Granul. Matt. 19 (2), 23.CrossRefGoogle Scholar
Pereira, G.G., Pucilowski, S., Liffman, K. & Cleary, P.W. 2011 a Streak patterns in binary granular media in a rotating drum. Appl. Math. Model. 35 (4), 16381646.CrossRefGoogle Scholar
Pereira, G.G., Sinnott, M.D., Cleary, P.W., Liffman, K., Metcalfe, G. & Šutalo, I.D. 2011 b Insights from simulations into mechanisms for density segregation of granular mixtures in rotating cylinders. Granul. Matt. 13 (1), 5374.CrossRefGoogle Scholar
Pillitteri, S., Opsomer, E., Lumay, G. & Vandewalle, N. 2020 How size ratio and segregation affect the packing of binary granular mixtures. Soft Matt. 16 (39), 90949100.CrossRefGoogle Scholar
Qiao, J., Duan, C., Dong, K., Wang, W., Jiang, H., Zhu, H. & Zhao, Y. 2021 DEM study of segregation degree and velocity of binary granular mixtures subject to vibration. Powder Technol. 382, 107117.CrossRefGoogle Scholar
Rodolfo, J.B., Rondinelli, ML., Raphael, LS., Claudio, RD. & Marcos A.S., B. 2020 Experimental study and DEM analysis of granular segregation in a rotating drum. Powder Technol. 364, 112.Google Scholar
Sahu, V.K., Kumawat, S., Agrawal, S. & Tripathi, A. 2023 Particle force-based density segregation theory for multi-component granular mixtures in a periodic chute flow. J. Fluid Mech. 956, A8.CrossRefGoogle Scholar
Savage, S.B. & Lun, C.K.K. 1988 Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311335.CrossRefGoogle Scholar
Schlick, C.P., Fan, Y., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2015 Granular segregation in circular tumblers: theoretical model and scaling laws. J. Fluid Mech. 765, 632652.CrossRefGoogle Scholar
Schlick, C.P., Isner, A.B., Freireich, B.J., Fan, Y., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2016 A continuum approach for predicting segregation in flowing polydisperse granular materials. J. Fluid Mech. 797, 95109.CrossRefGoogle Scholar
Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D. & Plimpton, S.J. 2001 Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64 (5), 051302.CrossRefGoogle ScholarPubMed
Singh, H., Liu, D. & Henann, D.L. 2024 Continuum modelling of size segregation and flow in dense, bidisperse granular media: accounting for segregation driven by both pressure gradients and shear-strain-rate gradients. J. Fluid Mech. 988, A43.CrossRefGoogle Scholar
Thornton, A.R., Weinhart, T., Luding, S. & Bokhove, O. 2012 Modeling of particle size segregation: calibration using the discrete particle method. Intl J. Mod. Phys. C 23 (08), 1240014.CrossRefGoogle Scholar
Tirapelle, M., Santomaso, A.C., Richard, P. & Artoni, R. 2021 Experimental investigation and numerical modelling of density-driven segregation in an annular shear cell. Adv. Powder Technol. 32 (5), 13051317.CrossRefGoogle Scholar
Trewhela, T. 2024 Segregation–rheology feedback in bidisperse granular flows: a coupled Stokes’ problem. J. Fluid Mech. 983, A45.CrossRefGoogle Scholar
Trewhela, T., Ancey, C. & Gray, J.M.N.T. 2021 An experimental scaling law for particle-size segregation in dense granular flows. J. Fluid Mech. 916, A55.CrossRefGoogle Scholar
Tripathi, A. & Khakhar, D.V. 2011 Rheology of binary granular mixtures in the dense flow regime. Phys. Fluids 23 (11), 113302.CrossRefGoogle Scholar
Tripathi, A. & Khakhar, D.V. 2013 Density difference-driven segregation in a dense granular flow. J. Fluid Mech. 717, 643669.CrossRefGoogle Scholar
Tripathi, A., Kumar, A., Nema, M. & Khakhar, D.V. 2021 Theory for size segregation in flowing granular mixtures based on computation of forces on a single large particle. Phys. Rev. E 103 (3), L031301.CrossRefGoogle ScholarPubMed
Utter, B. & Behringer, R.P. 2004 Self-diffusion in dense granular shear flows. Phys. Rev. E 69 (3), 031308.CrossRefGoogle ScholarPubMed
Wiederseiner, S., Andreini, N., Épely, CG., Moser, G., Monnereau, M., Gray, J.M.N.T. & Ancey, C. 2011 Experimental investigation into segregating granular flows down chutes. Phys. Fluids 23 (1), 013301.CrossRefGoogle Scholar
Xiao, H., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2016 Modelling density segregation in flowing bidisperse granular materials. Proc. R. Soc. A: Math. Phys. Engng Sci. 472(2191), 20150856.CrossRefGoogle Scholar
Yang, L.Y.M., Zheng, Q.J., Bai, L. & Yu, A.B. 2021 Continuum modelling of granular segregation by coupling flow rheology and transport equation. Powder Technol. 378, 371387.CrossRefGoogle Scholar
Yang, S.C. 2006 Density effect on mixing and segregation processes in a vibrated binary granular mixture. Powder Technol. 164 (2), 6574.CrossRefGoogle Scholar
Supplementary material: File

Kumawat et al. supplementary material

Kumawat et al. supplementary material
Download Kumawat et al. supplementary material(File)
File 4.5 MB