Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T18:49:33.409Z Has data issue: false hasContentIssue false

Toward approximating non-local dynamics in single-point pressure–strain correlation closures

Published online by Cambridge University Press:  07 December 2016

Aashwin A. Mishra*
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, California, CA 94305, USA
Sharath S. Girimaji
Affiliation:
Department of Ocean Engineering, Texas A&M University, College Station, Texas, TX 77840, USA
*
Email address for correspondence: [email protected]

Abstract

A key hurdle in turbulence modelling is the closure for the pressure–strain correlation. Herein, the challenge stems from the fact that the non-local dynamics due to pressure cannot be comprehensively incorporated in a single-point closure expression. In this article, we analyse different aspects of the dynamics due to pressure for their amenability with the single-point modelling framework. Based on this, an approach is proposed that incorporates a set of pragmatic compromises in the form and the scope of the model to augment the degree of non-local dynamics that may be approximated by a single-point pressure strain correlation model. Thence, this framework is utilized to formulate an illustrative model. The predictions of this model are compared to numerical and experimental data and contrasted against other established closures over a range of homogeneous flows, under diverse conditions. Finally, the regions of validity in anisotropy space for this illustrative model are delineated using the process realizability criteria for different flows.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bardina, J., Ferziger, H. & Reynolds, W. C.1983 Improved turbulence models based on large-eddy simulation of homogeneous, incompressible turbulent flows. Tech. Rep. TF-19. Stanford University.Google Scholar
Blaisdell, G. A. & Shariff, K. 1996 Simulation and modeling of the elliptic streamline flow. In Studying Turbulence Using Numerical Simulation Databases: Proceedings of the 1996 Summer Program, pp. 433446. Stanford University.Google Scholar
Cambon, C.1982 Étude spectrale d’un champ turbulent incompressible, soumis à des effets couplés de déformation et de rotation, imposés extérieurement. Thèse de Doctorat d’État, Université de Lyon, France.Google Scholar
Cambon, C., Benoit, J. P., Shao, L. & Jacquin, L. 1994 Stability analysis and large-eddy simulation of rotating turbulence with organized eddies. J. Fluid Mech. 278, 175200.CrossRefGoogle Scholar
Cambon, C., Jacquin, L. & Lubrano, J. L. 1992 Toward a new Reynolds stress model for rotating turbulent flows. Phys. Fluids 4, 812824.CrossRefGoogle Scholar
Cambon, C., Jeandel, D. & Mathieu, J. 1981 Spectral modelling of homogeneous non-isotropic turbulence. J. Fluid Mech. 104, 247262.CrossRefGoogle Scholar
Cambon, C. & Rubinstein, R. 2006 Anisotropic developments for homogeneous shear flows. Phys. Fluids 18 (8), 085106.Google Scholar
Chou, P. Y. 1945 On velocity correlations and the solutions of the equations of turbulent fluctuation. Q. Appl. Maths 3 (1), 3854.Google Scholar
Durbin, P. A. 1993 A Reynolds stress model for near-wall turbulence. J. Fluid Mech. 249, 465498.CrossRefGoogle Scholar
Johansson, A. V. & Hallback, M. 1994 Modeling the rapid pressure-strain in Reynolds stress closures. J. Fluid Mech. 269, 143168.Google Scholar
Kassinos, S. C. & Reynolds, W. C.1994 A structure-based model for the rapid distortion of homogeneous turbulence. Tech. Rep. TF-61. Stanford University.Google Scholar
Launder, B. E., Reece, G. J. & Rodi, W. 1975 Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68 (03), 537566.CrossRefGoogle Scholar
Lee, M. J. & Reynolds, W. C.1985 Numerical experiments on the structure of homogeneous turbulence. Tech. Rep. TF-24. Stanford University.Google Scholar
Lumley, J. L. 1978 Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123176.CrossRefGoogle Scholar
Mishra, A. A.2010 A dynamical systems approach towards modeling the rapid pressure strain correlation. Master’s thesis, Texas A&M University.Google Scholar
Mishra, A. A.2014 The art and science in modeling the pressure-velocity interactions. PhD thesis, Texas A&M University.Google Scholar
Mishra, A. A. & Girimaji, S. S. 2010 Pressure-strain correlation modeling: towards achieving consistency with rapid distrotion theory. Flow Turbul. Combust. 85, 593619.Google Scholar
Mishra, A. A. & Girimaji, S. S. 2012 Manufactured turbulence with Langevin equations. ERCOFTAC Bulletin 92, 1116.Google Scholar
Mishra, A. A. & Girimaji, S. S. 2013 Intercomponent energy transfer in incompressible homogeneous turbulence: multi-point physics and amenability to one-point closures. J. Fluid Mech. 731, 639681.Google Scholar
Mishra, A. A. & Girimaji, S. S. 2014 On the realizability of pressure-strain closures. J. Fluid Mech. 755, 535560.CrossRefGoogle Scholar
Mishra, A. A. & Girimaji, S. S. 2015 Hydrodynamic stability of three-dimensional homogeneous flow topologies. Phys. Rev. E 92 (5), 053001.Google Scholar
Mishra, A. A., Hasan, N., Sanghi, S. & Kumar, R. 2008 Two-dimensional buoyancy driven thermal mixing in a horizontally partitioned adiabatic enclosure. Phys. Fluids 20 (6), 063601.CrossRefGoogle Scholar
Mishra, A. A., Iaccarino, G. & Duraisamy, K. 2015 Epistemic uncertainty in statistical Markovian turbulence models. In CTR Annu. Res. Briefs 2015, pp. 183195. Stanford University.Google Scholar
Mishra, A. A., Iaccarino, G. & Duraisamy, K. 2016 Sensitivity of flow evolution on turbulence structure. Phys. Rev. Fluids 1 (5), 052402.CrossRefGoogle Scholar
Moffatt, H. K. 1967a The interaction of turbulence with a strong wind shear. In URSI-IUGG International Colloquim on Atmospheric Turbulence and Radio Wave Propagation, pp. 139156. Nauka.Google Scholar
Moffatt, H. K. 1967b On the supression of turbulence by a uniform magnetic field. J. Fluid Mech. 28, 571592.Google Scholar
Mons, V., Cambon, C. & Sagaut, P. 2016 A spectral model for homogeneous shear-driven anisotropic turbulence in terms of spherically averaged descriptors. J. Fluid Mech. 788, 147182.Google Scholar
Rotta, J. 1951 Statistische theorie nichthomogener turbulenz. Z. Phys. 129, 547572.Google Scholar
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.Google Scholar
Salhi, A., Cambon, C. & Speziale, C. G. 1997 Linear stability analysis of plane quadratic flows in a rotating frame with applications to modeling. Phys. Fluids 9 (8), 23002309.CrossRefGoogle Scholar
Schumann, U. 1977 Realizability of Reynolds stress turbulence models. J. Fluid Mech. 20, 721725.Google Scholar
Speziale, C. G., Abid, R. & Durbin, P. A. 1994 On the realizability of Reynolds stress turbulence closures. J. Sci. Comput. 9, 369403.CrossRefGoogle Scholar
Speziale, C. G. & Durbin, P. A. 1994 Realizability of second-moment closure via stochastic analysis. J. Fluid Mech. 280, 395407.Google Scholar
Speziale, C. G., Sarkar, S. & Gatski, T. B. 1991 Modelling the pressure strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech. 227, 245272.Google Scholar
du Vachat, R. 1977 Realizability inequalities in turbulent flows. Phys. Fluids 20 (4), 551556.Google Scholar