Hostname: page-component-f554764f5-8cg97 Total loading time: 0 Render date: 2025-04-22T02:31:18.814Z Has data issue: false hasContentIssue false

Toward ab initio molecular simulation of reacting air: Mach 15 air flow over a blunt wedge

Published online by Cambridge University Press:  10 October 2024

Paolo Valentini*
Affiliation:
Air Force Research Laboratory, Kirtland Air Force Base, NM 87106, USA
Maninder S. Grover
Affiliation:
University of Dayton Research Institute, 1700 South Patterson Blvd, Dayton, OH 45469, USA
Nicholas J. Bisek
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA
*
Email address for correspondence: [email protected]

Abstract

We present a Mach 15 air flow over a blunt two-dimensional wedge simulated using the direct molecular simulation method. As electronically excited states are not modelled, the resulting air mixture around the wedge contains the electronic ground states only, namely ${\rm N}_2(\text {X}^1 \varSigma _g^{+})$, ${\rm O}_2(\text {X}^3 \varSigma _g^{-})$, ${\rm NO}(\text {X}^2\varPi _r)$, ${\rm N}(^4{\rm S})$ and ${\rm O}(^3{\rm P})$. All the potential energy surfaces (PESs) that are used to model the various interactions between air particles are ab initio, with two notable exceptions, namely ${\rm N}_2+{\rm NO}$ and ${\rm O}_2+{\rm NO}$. At the selected free-stream conditions, strong vibrational non-equilibrium is observed in the shock layer. The flow is characterized by significant chemical activity, with near-complete oxygen dissociation, considerable formation of NO and minimal molecular nitrogen dissociation. Complex mass diffusion kinetics, driven by composition, temperature and pressure gradients, are identified in the shock layer. All these physical phenomena are directly coupled to, and responsible for, the mechanics of the gas flow and are all solely traceable to the PESs’ inputs, without the need for any thermochemical models, mixing rules or constitutive laws for transport properties. Because the flow is entirely at near-continuum conditions, it is a gas-phase thermophysics benchmark that is useful to enhance the fidelity of continuum models used in computational fluid dynamics of hypersonic flows.

Type
JFM Papers
Creative Commons
This is a work of the US Government and is not subject to copyright protection within the United States.
Copyright
© US Air Force Research Laboratory, 2024. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anderson, J.D. 2006 Hypersonic and High-Temperature Gas Dynamics. AIAA Education Series, 2nd edn. American Institute of Aeronautics and Astronautics, Inc.CrossRefGoogle Scholar
Andrienko, D. & Boyd, I.D. 2018 State-resolved characterization of nitric oxide formation in shock flows. In 2018 AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics (AIAA).CrossRefGoogle Scholar
Bender, J.D., Valentini, P., Nompelis, I., Paukku, Y., Varga, Z., Truhlar, D.G., Schwartzentruber, T.E. & Candler, G.V. 2015 An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of ${\rm N}_2+{\rm N}_2$ dissociation reactions. J. Chem. Phys. 143 (5), 054304.CrossRefGoogle Scholar
Bird, G.A. 1994 Molecular Gas Dynamics and Simulation of Gas Flows. Cambridge University Press.CrossRefGoogle Scholar
Bonelli, F., Pascazio, G. & Colonna, G. 2021 Effect of finite-rate catalysis on wall heat flux prediction in hypersonic flow. Phys. Rev. Fluids 6, 033201.CrossRefGoogle Scholar
Capitelli, M., Ferreira, C.M., Gordiets, B.F. & Osipov, A.I. 2013 Plasma Kinetics in Atmospheric Gases, vol. 31. Springer Science & Business Media.Google Scholar
Chaudhry, R.S., Boyd, I.D., Torres, E., Schwartzentruber, T.E. & Candler, G.V. 2020 Implementation of a chemical kinetics model for hypersonic flows in air for high-performance CFD. AIAA Scitech 2020 Forum. American Institute of Aeronautics and Astronautics (AIAA).CrossRefGoogle Scholar
Colonna, G., Bonelli, F. & Pascazio, G. 2019 Impact of fundamental molecular kinetics on macroscopic properties of high-enthalpy flows: the case of hypersonic atmospheric entry. Phys. Rev. Fluids 4, 033404.CrossRefGoogle Scholar
Eastman, E.D. 1928 Theory of the Soret effect. J. Am. Chem. Soc. 50, 283291.CrossRefGoogle Scholar
Fernández-Ramos, A., Miller, J.A., Klippenstein, S.J. & Truhlar, D.G. 2006 Modeling the kinetics of bimolecular reactions. Chem. Rev. 106 (11), 45184584.CrossRefGoogle ScholarPubMed
Ferziger, J.H. & Kaper, H.G. 1993 Mathematical Theory of Transport Processes in Gases. North-Holland Publishing Company.Google Scholar
Frenkel, D. & Smit, B. 2002 Understanding Molecular Simulation: From Algorithms to Applications. Academic.Google Scholar
Garcia, E., Martínez, T. & Laganà, A. 2015 Quasi-resonant vibrational energy transfer in ${\rm N}_2+{\rm N}_2$ collisions: effect of the long-range interaction. Chem. Phys. Lett. 620, 103108.CrossRefGoogle Scholar
Gimelshein, S.F. & Wysong, I.J. 2019 Gas-phase recombination effect on surface heating in nonequilibrium hypersonic flows. J. Thermophys. Heat Transfer 33 (3), 638646.CrossRefGoogle Scholar
Grover, M.S., Schwartzentruber, T.E., Varga, Z. & Truhlar, D.G. 2019 a Vibrational energy transfer and collision-induced dissociation in ${\rm O}+{\rm O}_2$ collisions. J. Thermophys. Heat Transfer 33 (3), 797807.CrossRefGoogle Scholar
Grover, M.S., Torres, E. & Schwartzentruber, T.E. 2019 b Direct molecular simulation of internal energy relaxation and dissociation in oxygen. Phys. Fluids 31 (7), 076107.CrossRefGoogle Scholar
Grover, M.S. & Valentini, P. 2021 Ab initio simulation of hypersonic flows past a cylinder based on accurate potential energy surfaces. Phys. Fluids 33 (5), 051704.CrossRefGoogle Scholar
Grover, M.S., Valentini, P., Bisek, N.J. & Verhoff, A.M. 2023 a First principle simulation of CUBRC double cone experiments. AIAA Aviation 2023 Forum. American Institute of Aeronautics and Astronautics (AIAA).CrossRefGoogle Scholar
Grover, M.S., Verhoff, A.M., Valentini, P. & Bisek, N.J. 2023 b First principles simulation of reacting hypersonic flow over a blunt wedge. Phys. Fluids 35 (8), 086106.CrossRefGoogle Scholar
Guo, J., Wang, X. & Li, S. 2024 Investigation of high enthalpy thermochemical nonequilibrium flow over spheres. Phys. Fluids 36 (1), 016122.CrossRefGoogle Scholar
Guy, A., Bourdon, A. & Perrin, M.-Y. 2013 Consistent multi-internal-temperatures models for nonequilibrium nozzle flows. Chem. Phys. 420, 1524.CrossRefGoogle Scholar
Hirshfelder, J.O., Curtiss, C.F. & Bird, R.B. 1964 Molecular Theory of Gases and Liquids. Structure of Matter Series. John Wiley and Sons Inc.Google Scholar
Jeans, J. 2009 The Dynamical Theory of Gases, 4th edn. Cambridge University Press.CrossRefGoogle Scholar
Josyula, E., Bailey, W.F. & Suchyta, C.J. 2011 Dissociation modeling in hypersonic flows using state-to-state kinetics. J. Thermophys. Heat Transfer 25 (1), 3447.CrossRefGoogle Scholar
Koura, K. 1997 Monte Carlo direct simulation of rotational relaxation of diatomic molecules using classical trajectory calculations: nitrogen shock wave. Phys. Fluids 9 (11), 35433549.CrossRefGoogle Scholar
Koura, K. 1998 Monte Carlo direct simulation of rotational relaxation of nitrogen through high total temperature shock waves using classical trajectory calculations. Phys. Fluids 10 (10), 26892691.CrossRefGoogle Scholar
Landau, L. & Teller, E. 1936 Zur theorie der schalldispersion. Physik. Z. 10 (34).Google Scholar
Li, J., Varga, Z., Truhlar, D.G. & Guo, H. 2020 Many-body permutationally invariant polynomial neural network potential energy surface for ${\rm N}_4$. J. Chem. Theory Comput. 16 (8), 48224832.CrossRefGoogle Scholar
Lin, W., Varga, Z., Song, G., Paukku, Y. & Truhlar, D.G. 2016 Global triplet potential energy surfaces for the ${\rm N}_2({\rm X}^1\varSigma ) + {\rm O}(^3{\rm P}) \rightarrow {\rm NO}({\rm X}^2\varPi ) + {\rm N}(4{\rm S})$ reaction. J. Chem. Phys. 144 (2), 024309.CrossRefGoogle Scholar
Liu, Y., Panesi, M., Sahai, A. & Vinokur, M. 2015 General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures. J. Chem. Phys. 142 (13), 134109.CrossRefGoogle ScholarPubMed
Macdonald, R.L., Grover, M.S., Schwartzentruber, T.E. & Panesi, M. 2018 a Construction of a coarse-grain quasi-classical trajectory method. II. Comparison against the direct molecular simulation method. J. Chem. Phys. 148 (5), 054310.CrossRefGoogle ScholarPubMed
Macdonald, R.L., Jaffe, R.L., Schwenke, D.W. & Panesi, M. 2018 b Construction of a coarse-grain quasi-classical trajectory method. I. Theory and application to ${\rm N}_2$${\rm N}_2$ system. J. Chem. Phys. 148 (5), 054309.CrossRefGoogle Scholar
Matsumoto, H. & Koura, K. 1991 Comparison of velocity distribution functions in an argon shock wave between experiments and Monte Carlo calculations for Lennard–Jones potential. Phys. Fluids A: Fluid Dyn. 3 (12), 30383045.CrossRefGoogle Scholar
Munafò, A., Liu, Y. & Panesi, M. 2015 Modeling of dissociation and energy transfer in shock-heated nitrogen flows. Phys. Fluids 27 (12), 127101.CrossRefGoogle Scholar
Ninni, D., Bonelli, F., Colonna, G. & Pascazio, G. 2022 Unsteady behavior and thermochemical non equilibrium effects in hypersonic double-wedge flows. Acta Astronaut. 191, 178192.CrossRefGoogle Scholar
Nonaka, S., Mizuno, H., Takayama, K. & Park, C. 2000 Measurement of shock standoff distance for sphere in ballistic range. J. Thermophys. Heat Transfer 14 (2), 225229.CrossRefGoogle Scholar
Norman, P., Valentini, P. & Schwartzentruber, T. 2013 GPU-accelerated classical trajectory calculation direct simulation Monte Carlo applied to shock waves. J. Comput. Phys. 247, 153167.CrossRefGoogle Scholar
Olejniczak, J., Candler, G.V., Wright, M.J., Leyva, I. & Hornung, H.G. 1999 Experimental and computational study of high enthalpy double-wedge flows. J. Thermophys. Heat Transfer 13 (4), 431440.CrossRefGoogle Scholar
Panesi, M., Jaffe, R.L., Schwenke, D.W. & Magin, T.E. 2013 Rovibrational internal energy transfer and dissociation of ${\rm N}_2(^1\sum _g^+) - {\rm N} (^4{\rm S}_u)$ system in hypersonic flows. J. Chem. Phys. 138 (4), 044312.CrossRefGoogle Scholar
Panesi, M., Magin, T.E., Bourdon, A., Bultel, A. & Chazot, O. 2011 Electronic excitation of atoms and molecules for the fire II flight experiment. J. Thermophys. Heat Transfer 25 (3), 361374.CrossRefGoogle Scholar
Park, C. 1988 Assessment of a two-temperature kinetic model for dissociating and weakly ionizing nitrogen. J. Thermophys. Heat Transfer 2 (1), 816.CrossRefGoogle Scholar
Park, C. 1993 Review of chemical-kinetic problems of future NASA missions, I: earth entries. J. Thermophys. Heat Transfer 7 (3), 385398.CrossRefGoogle Scholar
Paukku, Y., Varga, Z. & Truhlar, D.G. 2018 Potential energy surface of triplet ${\rm O}_4$. J. Chem. Phys. 148 (12), 124314.CrossRefGoogle Scholar
Paukku, Y., Yang, K.R., Varga, Z., Song, G., Bender, J.D. & Truhlar, D.G. 2017 Potential energy surfaces of quintet and singlet ${\rm O}_4$. J. Chem. Phys. 147 (3), 034301.CrossRefGoogle Scholar
Plimpton, S.J., Moore, S.G., Borner, A., Stagg, A.K., Koehler, T.P., Torczynski, J.R. & Gallis, M.A. 2019 Direct simulation Monte Carlo on petaflop supercomputers and beyond. Phys. Fluids 31 (8), 086101. http://sparta.sandia.gov.CrossRefGoogle Scholar
Schwartzentruber, T.E., Grover, M.S. & Valentini, P. 2018 Direct molecular simulation of nonequilibrium dilute gases. J. Thermophys. Heat Transfer 32 (4), 892903.CrossRefGoogle Scholar
Shu, Y., et al. 2023 ‘POTLIB’ http://comp.chem.umn.edu/potlib.Google Scholar
Torres, E., Geistfeld, E.C. & Schwartzentruber, T.E. 2023 Direct molecular simulation and quasi-classical trajectory calculation studies of 5-species air mixtures. AIAA SciTech 2023 Forum. American Institute of Aeronautics and Astronautics (AIAA).CrossRefGoogle Scholar
Torres, E., Geistfeld, E.C. & Schwartzentruber, T.E. 2024 High-temperature nonequilibrium air chemistry from first principles. J. Thermophys. Heat Transfer 0 (0), 132.CrossRefGoogle Scholar
Torres, E. & Schwartzentruber, T.E. 2020 Direct molecular simulation of nitrogen dissociation under adiabatic postshock conditions. J. Thermophys. Heat Transfer 34 (4), 801815.CrossRefGoogle Scholar
Torres, E. & Schwartzentruber, T.E. 2022 Direct molecular simulation of oxygen dissociation across normal shocks. Theor. Comput. Fluid Dyn. 36 (1), 4180.CrossRefGoogle Scholar
Truhlar, D.G. & Muckerman, J.T. 1979 Atom-Molecule Collision Theory: A Guide for the Experimentalist. Plenum.Google Scholar
Valentini, P., Grover, M.S., Bisek, N.J. & Verhoff, A.M. 2021 Molecular simulation of flows in thermochemical non-equilibrium around a cylinder using ab initio potential energy surfaces for ${\rm N}_2 + {\rm N}$ and ${\rm N}_2 + {\rm N}_2$ interactions. Phys. Fluids 33 (9), 096108.CrossRefGoogle Scholar
Valentini, P., Grover, M.S., Verhoff, A.M. & Bisek, N.J. 2023 Near-continuum, hypersonic oxygen flow over a double cone simulated by direct simulation Monte Carlo informed from quantum chemistry. J. Fluid Mech. 966, A32.CrossRefGoogle Scholar
Valentini, P., Norman, P., Zhang, C. & Schwartzentruber, T.E. 2014 Rovibrational coupling in molecular nitrogen at high temperature: an atomic-level study. Phys. Fluids 26 (5), 056103.CrossRefGoogle Scholar
Valentini, P. & Schwartzentruber, T.E. 2009 Large-scale molecular dynamics simulations of normal shock waves in dilute argon. Phys. Fluids 21 (6), 066101.CrossRefGoogle Scholar
Valentini, P., Schwartzentruber, T.E., Bender, J.D. & Candler, G.V. 2016 Dynamics of nitrogen dissociation from direct molecular simulation. Phys. Rev. Fluids 1 (4), 043402.CrossRefGoogle Scholar
Valentini, P., Schwartzentruber, T.E, Bender, J.D., Nompelis, I. & Candler, G.V. 2015 Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface. Phys. Fluids 27 (8), 086102.CrossRefGoogle Scholar
Valentini, P., Tump, P.A., Zhang, C. & Schwartzentruber, T.E. 2013 Molecular dynamics simulations of shock waves in mixtures of noble gases. J. Thermophys. Heat Transfer 27 (2), 226234.CrossRefGoogle Scholar
Varga, Z., Liu, Y., Li, J., Paukku, Y., Guo, H. & Truhlar, D.G. 2021 Potential energy surfaces for high-energy ${\rm N} + {\rm O}_2$ collisions. J. Chem. Phys. 154 (8), 084304.CrossRefGoogle Scholar
Varga, Z., Meana-Pañeda, R., Song, G., Paukku, Y. & Truhlar, D.G. 2016 Potential energy surface of triplet ${\rm N}_2{\rm O}_2$. J. Chem. Phys. 144 (2), 024310.CrossRefGoogle Scholar
Varga, Z., Paukku, Y. & Truhlar, D.G. 2017 Potential energy surfaces for ${\rm O} + {\rm O}_2$ collisions. J. Chem. Phys. 147 (15), 154312.CrossRefGoogle Scholar
Varga, Z. & Truhlar, D.G. 2021 Potential energy surface for high-energy ${\rm N} + {\rm N}_2$ collisions. Phys. Chem. Chem. Phys. 23, 2627326284.CrossRefGoogle Scholar
Wang, W.-L. & Boyd, I.D. 2003 Predicting continuum breakdown in hypersonic viscous flows. Phys. Fluids 15 (1), 91100.CrossRefGoogle Scholar
Wang, X., Guo, J., Hong, Q. & Li, S. 2023 High-fidelity state-to-state modeling of hypersonic flow over a double cone. Phys. Fluids 35 (11), 116101.CrossRefGoogle Scholar
Wright, M.J., White, T. & Mangini, N. 2009 Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia – Version 4.01.1. NASA, Ames Research Center, Moffett Field, CA.Google Scholar
Zibitsker, A.L., McQuaid, J.A., Stern, E.C., Palmer, G.E., Libben, B.J., Brehm, C. & Martin, A. 2023 Finite-rate and equilibrium study of graphite ablation under arc-jet conditions. Comput. Fluids 267, 106069.CrossRefGoogle Scholar