Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-19T01:17:42.988Z Has data issue: false hasContentIssue false

Tidal excitation of hydromagnetic waves and their damping in the Earth

Published online by Cambridge University Press:  26 April 2006

R. R. Kerswell
Affiliation:
Department of Mathematics and Statistics, University of Newcastle upon Tyne, NE1 7RU, UK

Abstract

We examine the possibility that the Earth's outer core, as a tidally distorted fluid-filled rotating spheroid, may be the seat of an elliptical instability. The instability mechanism is described within the framework of a simple Earth-like model. The preferred forms of wave disturbance are explored and a likely growth rate supremum deduced. Estimates are made of the Ohmic and viscous decay rates of such hydromagnetic waves in the outer core. Rather than a conclusive disparity of scales, we find that typical elliptical growth rates, Ohmic decay rates and viscous decay rates all have the same order for plausible core fields and core-to-mantle conductivities. This study is all the more timely considering the recent realization that the Earth's precession may also drive similar instabilities at comparable strengths in the outer core.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, K. D. & Lumb, L. I. 1987 Inertial waves identified in the Earth's fluid outer core. Nature 325, 421423.Google Scholar
Aldridge, K. D., Lumb, L. I. & Henderson, G. A. 1989 A Poincaré model for the Earth's fluid core. Geophys. Astrophys. Fluid Dyn. 48, 523.Google Scholar
Bayly, B. J. 1986 Three dimensional instability of elliptical flow. Phys. Rev. Lett. 57, 21602163.Google Scholar
Boubnov, B. M. 1978 Effect of Coriolis force field on the motion of a fluid inside an ellipsoidal cavity. Izv. Atmos. Ocean. Phys. 14, 151153.Google Scholar
Braginsky, S. I. 1967 Magnetic waves in the Earth's core. Geomag. Aeron. 7, 851859.Google Scholar
Braginsky, S. I. 1991 Towards a realistic theory of the geodynamo. Geophys. Astrophys. Fluid Dyn. 60, 89134.Google Scholar
Bryan, G. H. 1889 The waves on a rotating liquid spheroid of finite ellipticity. Phil. Trans. R. Soc. Lond. A 180, 187219.Google Scholar
Cartan, M. E. 1922 Sur les petites oscillations d’une masse fluide. Bull. Sci. Maths 46, 317352.Google Scholar
Craik, A. D. D. 1989 The stability of unbounded two- and three-dimensional flows subject to body forces: some exact solutions. J. Fluid Mech. 198, 275292.Google Scholar
Craik, A. D. D. 1991 The stability of elliptical flows, unbounded and bounded. In Proc. Intl Symp. on Generation of Large Scale Structures in Continuous Media, Moscow USSR. (ed. R. Z. Sagdeev, U. Frisch, F. Hussain, S. S. Moiseev, N. S. Erokhin).
Crossley, D. J., Hinderer, J. & Legros, H. 1991 On the excitation, detection and damping of core modes. Phys. Earth Planet. Inter. 68, 97116.Google Scholar
Gans, R. F. 1970 On hydromagnetic precession in a cylinder. J. Fluid Mech. 45, 111130.Google Scholar
Gans, R. F. 1971 On hydromagnetic oscillations in a rotating cavity. J. Fluid Mech. 50, 449467.Google Scholar
Gledzer, E. B., Dolzhanskiy, F. V., Obukhov, A. M. & Ponomarev, V. M. 1975 An experimental and theoretical study of the stability of motion of a liquid in an elliptical cylinder. Isv. Atmos. Ocean. Phys. 11, 617622.Google Scholar
Gledzer, E. B., Novibov, Yu. V., Obukhov, A. M. & Chusov, M. A. 1974 An investigation of the stability of liquid flows in a three-axis ellipsoid. Isv. Atmos. Ocean. Phys. 10, 6971.Google Scholar
Gledzer, E. B. & Ponomarev, V. M. 1977 Finite-dimensional approximation of the motions of an incompressible fluid in an ellipsoidal cavity. Isv. Atmos. Ocean. Phys. 13, 565569.Google Scholar
Gledzer, E. B. & Ponomarev, V. M. 1992 Instability of bounded flows with elliptical streamlines. J. Fluid Mech. 240, 130.Google Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Hide, R. 1966 Free hydromagnetic oscillations of the Earth's core and the theory of the geomagnetic variation. Phil. Trans. R. Soc. Lond. A 259, 615647.Google Scholar
Kerswell, R. R. 1993a Elliptical instabilities of stratified hydromagnetic waves. Geophys. Astrophys. Fluid Dyn. 71, 105143.Google Scholar
Kerswell, R. R. 1993b The instability of precessing flow. Geophys. Astrophys. Fluid Dyn. 72, 107144.Google Scholar
Kudlick, M. D. 1966 On transient motions in a contained rotating fluid. PhD thesis, MIT.
Li, X. & Jeanloz, R. 1987 Electrical conductivity of (Mg,Fe)SiO3 perovskite and a perovskitedominated assemblage at lower mantle conditions. Geophys. Res. Lett. 14, 10751078.Google Scholar
Li, X. & Jeanloz, R. 1988 Measurement of electrical conductivity and dielectric constant of (Mg0.9Fe0.1)SiO3 perovskite. EOS 69, 1436.Google Scholar
Loper, D. E. 1975 Torque balance and energy budget for the precessionally driven dynamo. Phys. Earth Planet. Inter. 11, 4360.Google Scholar
Lubow, S. H., Pringle, J. E. & Kerswell, R. R. 1993 Tidal instability of accretion disks. Astrophys. J. 419, 758767.Google Scholar
Malkus, W. V. R. 1967 Hydromagnetic planetary waves. J. Fluid Mech. 28, 793802.Google Scholar
Malkus, W. V. R. 1989 An experimental study of global instabilities due to tidal (elliptical) distortion of a rotating elastic cylinder. Geophys. Astrophys. Fluid Dyn. 48, 123134.Google Scholar
Malkus, W. V. R. 1993 Energy sources for planetary dynamos. In Theory of Solar and Planetary Dynamos, NATO ASI Conf., Cambridge University Press.
Melchior, P. W., Crossley, D. J., Dehant, V. P. & Ducarme, B. 1988 Have inertial waves been identified from the Earth's core? In Structure and Dynamics of the Earth's Deep Interior (ed. D. E. Smylie & R. Hide), pp. 112. American Geophysical Union.
Melchior, P. & Ducarme, B. 1986 Detection of inertial gravity oscillations in the Earth's core with a superconducting gravimeter at Brussels. Phys. Earth Planet. Inter. 42, 129.Google Scholar
Peyronneau, J. & Poirier, J. P. 1989 Electrical conductivity of the earth's lower mantle. Nature 342, 537539.Google Scholar
Pierrehumbert, R. T. 1986 Universal short-wave instability of 2-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 57, 21572159.Google Scholar
Poincaré, H. 1885 Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation. Acta Mathematica 7, 259380.Google Scholar
Roberts, P. H. & Soward, A. M. 1992 Dynamo theory. Ann. Rev. Fluid Mech. 24, 459512.Google Scholar
Roberts, P. H. & Stewartson, K. 1963 On the stability of a Maclaurin spheroid of small viscosity. Astrophys. J. 137, 777790.Google Scholar
Roesner, K. G. & Schmieg, H. 1980 Instabilities of spin-up and spin-down flows inside of liquidfilled ellipsoids. Proc. Colloqu. Pierre Curie, 1–5 Sept., Paris.Google Scholar
Smylie, D. E., Xianhua Jiang, Brennan, B. J., & Kachishige, Sato 1992 Numerical calculation of modes of oscillation of the Earth's core. Geophys. J. Intl 108, 465490.Google Scholar
Soward, A. M. 1991 The Earth's Dynamo. Geophys. Astrophys. Fluid Dyn. 62, 191209.Google Scholar
Suess, S. T. 1970 Some effects of gravitational tides on a model Earth's core. J. Geophys. Res. 75, 66506661.Google Scholar
Suess, S. T. 1971 Viscous flow in a deformable rotating container. J. Fluid Mech. 45, 189201.Google Scholar
Vladimirov, V. A. & Tarasov, V. 1985 Resonance instability of the flows with closed stream-lines. In Laminar-Turbulent Transition; IUTAM Symposium Novosibirsk (1984) (ed. V. V. Kozlov), pp. 717722. Springer.
Vladimirov, V. A. & Vostretsov, D. 1986 Instability of steady flows with constant vorticity in vessels of elliptic cross-section. Prikl. Matem. Mekhan. 50 (3), 367377 (Transl. in J. Appl. Math. Mech. 50(3), 369–377).Google Scholar
Waleffe, F. A. 1989 The 3D instability of a strained vortex and its relation to turbulence. PhD thesis, MIT.
Waleffe, F. A. 1990 On the three-dimensional instability of a strained vortex. Phys. Fluids A 2, 7680.Google Scholar
Wood, W. W. 1977 Inertial oscillations in a rigid axisymmetric container. Proc. R. Soc. Lond. A 358, 1730.Google Scholar
Wood, W. W. 1981 Inertial modes with large azimuthal wavenumbers in an axisymmetric container. J. Fluid Mech. 105, 427449.Google Scholar
Zhang, K. 1993 On equatorially trapped boundary inertial waves. J. Fluid Mech. 248, 203217.Google Scholar