Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T02:32:07.837Z Has data issue: false hasContentIssue false

Three-dimensional stability of vortex arrays

Published online by Cambridge University Press:  20 April 2006

A. C. Robinson
Affiliation:
Applied Mathematics, California Institute of Technology, Pasadena. California 91125
P. G. Saffman
Affiliation:
Applied Mathematics, California Institute of Technology, Pasadena. California 91125

Abstract

The stability to three-dimensional disturbances of three classical steady vortex configurations in an incompressible inviscid fluid is studied in the limit of small vortex cross-sectional area and long axial disturbance wavelength. The configurations examined are the single infinite vortex row, the Karman vortex street of staggered vortices and the symmetric vortex street. It is shown that the single row is most unstable to a two-dimensional disturbance, while the Karman vortex street is most unstable to a three-dimensional disturbance over a significant range of street spacing ratios. The symmetric vortex street is found to be most unstable to three-dimensional or two-dimensional symmetric disturbances depending on the spacing ratio of the street. Short remarks are made concerning the relevance of the calculations to the observed instabilities in free shear layer, wake and boundary-layer type flows.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Christiansen, J. P. & Zabusky, N. J. 1973 Instability, coalescence and fission of finite-area vortex structures. J. Fluid Mech. 61, 219243.Google Scholar
Crow, S. C. 1970 Stability theory for a pair of trailing vortices. A.I.A.A. J. 8, 21722179.Google Scholar
Domm, U. 1956 Über die Wirbelstraßen von geringster Instabilität. Z. angew. Math. Mech. 36, 367371.Google Scholar
Gopal, E. S. R. 1963 Motion and stability of quantized vortices in a finite channel: Application to liquid helium II. Ann. Phys. (N.Y.) 25, 196220.Google Scholar
Jimenez, J. 1975 Stability of a pair of co-rotating vortices. Phys. Fluids 18, 15801581.Google Scholar
Kármán, T. Von 1911 Über den Mechanismus des Widerstands, den ein bewegter Körper in einer Flüssigkeit erfährt. Göttinger Nachrichten, Math. Phys. Kl., 509–517.
Kármán, T. Von 1912 Über den Mechanismus des Widerstands, den ein bewegter Körper in einer Flüssigkeit erfährt. Göttinger Nachrichten, Math. Phys. Kl., 547–556.
Kármán, T. Von & Rubach, H. L. 1912 Über den Mechanismus des Flüssigkeits- und Luftwiderstands. Phys. Z. 13, 4959.Google Scholar
Kochin, N. J. 1939 On the instability of von Kármán's vortex street. Dokl. Akad. Nauk SSSR 24, 1923.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.
Moore, D. W. & Saffman, P. G. 1972 The motion of a vortex filament with axial flow. Phil. Trans. R. Soc. Lond. A 272, 403429.Google Scholar
Moore, D. W. & Saffman, P. G. 1974 A note on the stability of a vortex ring of small cross-section. Proc. R. Soc. Lond. A 338, 535537.Google Scholar
Moore, D. W. & Saffman, P. G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 346, 413425.Google Scholar
Pierrehumbert, R. T. 1980 The structure and stability of large vortices in an inviscid flow. M.I.T. Fluid Dynamics Lab. Rep. no. 80–1.Google Scholar
Pierrehumbert, R. T. & Widnall, S. E. 1982 The two- and three-dimensional instabilities of a spatially periodic shear layer. J. Fluid Mech. 114, 5982.Google Scholar
Rosenhead, L. 1930 The spread of vorticity in the wake behind a cylinder. Proc. R. Soc. Lond. A 127, 590612.Google Scholar
Rosenhead, L. 1953 Vortex systems in wakes. Adv. Appl. Mech. 3, 185195.Google Scholar
Roshko, A. 1976 Structure of turbulent shear flows: A new look. A.I.A.A. J. 14, 13491357.Google Scholar
Saffman, P. G. 1981 Dynamics of vorticity. J. Fluid Mech. 106, 4958.Google Scholar
Saffman, P. G. & Baker, G. R. 1979 Vortex interactions. Ann. Rev. Fluid Mech. 11. 95–122.Google Scholar
Saffman, P. G. & Schatzman, J. C. 1981 Properties of a vortex street of finite vortices. SIAM J. Sci. Stat. Comp. 2, 285295.Google Scholar
Saffman, P. G. & Schatzman, J. C. 1982a Stability of a vortex street of finite vortices. J. Fluid Mech. 117, 171185.Google Scholar
Saffman, P. G. & Schatzman, J. C. 1982b An inviscid model for the vortex-street wake. J. Fluid Mech. 122, 467486.Google Scholar
Saffman, P. G. & Szeto, R. 1981 Structure of a linear array of uniform vortices. Stud. Appl. Math. 65, 223248.Google Scholar
Schlayer, K. 1928 Über die Stabilität der Kármánschen Wirbelstraße gegenüber beliebigen Störungen in drei Dimensionen. Z. angew. Math. Mech. 8, 352372.Google Scholar
Schmieden, C. 1936 Zur Theorie der Kármánschen Wirbelstraße. Ing. Arch. 7, 215221.Google Scholar
Stuart, J. T. 1967 On finite amplitude oscillations in laminar mixing layers. J. Fluid Mech. 29, 417440.Google Scholar
Widnall, S. E. 1975 The structure and dynamics of vortex filaments. Ann. Rev. Fluid Mech. 7, 141165.Google Scholar
Widnall, S. E., Bliss, D. B. & Tsai, C-Y. 1974 The instability of short waves on a vortex ring. J. Fluid Mech. 66, 3547.Google Scholar
Wille, R. 1960 Kármán vortex streets. Adv. Appl. Mech. 6, 273287.Google Scholar