Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-20T16:38:09.149Z Has data issue: false hasContentIssue false

Three-dimensional instabilities of a stratified cylinder wake

Published online by Cambridge University Press:  20 October 2014

M. Bosco*
Affiliation:
Aix-Marseille Université CNRS, Centrale Marseille, IRPHE UMR 7342, 13384, Marseille, France
P. Meunier
Affiliation:
Aix-Marseille Université CNRS, Centrale Marseille, IRPHE UMR 7342, 13384, Marseille, France
*
Email address for correspondence: [email protected]

Abstract

This paper describes experimentally, numerically and theoretically how the three-dimensional instabilities of a cylinder wake are modified by the presence of a linear density stratification. The first part is focused on the case of a cylinder with a small tilt angle between the cylinder’s axis and the vertical. The classical mode A well-known for a homogeneous fluid is still present. It is more unstable for moderate stratifications but it is stabilized by a strong stratification. The second part treats the case of a moderate tilt angle. For moderate stratifications, a new unstable mode appears, mode S, characterized by undulated layers of strong density gradients and axial flow. These structures correspond to Kelvin–Helmholtz billows created by the strong shear present in the critical layer of each tilted von Kármán vortex. The last two parts deal with the case of a strongly tilted cylinder. For a weak stratification, an instability (mode RT) appears far from the cylinder, due to the overturning of the isopycnals by the von Kármán vortices. For a strong stratification, a short wavelength unstable mode (mode L) appears, even in the absence of von Kármán vortices. It is probably due to the strong shear created by the lee waves upstream of a secondary recirculation bubble. A map of the four different unstable modes is established in terms of the three parameters of the study: the Reynolds number, the Froude number (characterizing the stratification) and the tilt angle.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baines, P. 1987 Upstream blocking and air-flow over mountains. Annu. Rev. Fluid Mech. 19, 7597.CrossRefGoogle Scholar
Baines, P. & Hoinka, K. 1985 Stratified flow over two-dimensional topography in fluid of infinite depth. J. Atmos. Sci. 42, 16141630.Google Scholar
Barkley, D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.CrossRefGoogle Scholar
Barkley, D., Tuckerman, L. S. & Golubitski, M. 2000 Bifurcation theory for three-dimensional flow in the wake of a circular cylinder. Phys. Rev. E 61, 52475252.Google Scholar
Behara, S. & Mittal, S. 2010 Wake transition in flow past a circular cylinder. Phys. Fluids 22, 114104.Google Scholar
Billant, P. & Le Dizès, S. 2009 Waves on a columnar vortex in a strongly stratified fluid. Phys. Fluids 21, 106602.Google Scholar
Bloor, M. S. 1964 The transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 19, 290.Google Scholar
Boulanger, N., Meunier, P. & Le Dizès, S. 2006 Structure of a stratified tilted vortex. J. Fluid Mech. 583, 443458.Google Scholar
Boulanger, N., Meunier, P. & Le Dizès, S. 2007 Tilt-induced instability of a stratified vortex. J. Fluid Mech. 596, 120.CrossRefGoogle Scholar
Boyer, D. L., Davies, P. A., Fernando, H. & Zhang, X. 1989 Linearly stratified flow past a horizontal circular cylinder. Phil. Trans. R. Soc. Lond. A 328, 501528.Google Scholar
Browand, F. & Winant, C. 1972 Blocking ahead of a cylinder moving in a stratified fluid: an experiment. Geophys. Fluid Dyn. 4, 2953.Google Scholar
Brucker, K. & Sarkar, S. 2010 A comparative study of self-propelled and towed wakes in a stratified fluid. J. Fluid Mech. 652, 373404.Google Scholar
Canals, M., Pawlak, G. & MacCready, P. 2009 Tilted baroclinic tidal vortices. J. Phys. Oceanogr. 39, 333350.Google Scholar
Candelier, J., Le Dizès, S. & Millet, C. 2011 Three-dimensional instability of an inclined stratified plane jet. J. Fluid Mech. 685, 191201.Google Scholar
Candelier, J., Le Dizès, S. & Millet, C. 2012 Inviscid instability of a stably stratified compressible boundary layer on an inclined surface. J. Fluid Mech. 694, 524539.Google Scholar
Deloncle, A., Billant, P. & Chomaz, J.-M. 2011 Three-dimensional stability of vortex arrays in a stratified and rotating fluid. J. Fluid Mech. 678, 482510.CrossRefGoogle Scholar
Diamessis, P. J., Spedding, G. R. & Domaradzki, J. A. 2011 Similarity scaling and vorticity structure in high-Reynolds-number stably stratified turbulent wakes. J. Fluid Mech. 671, 5295.Google Scholar
Eloy, C. & Le Dizès, S. 1999 Three dimensional instability of Burgers and Lamb–Oseen vortices in a strain field. J. Fluid Mech. 378, 145166.Google Scholar
Fortuin, J. M. H. 1960 Theory and applications of two supplementary methods of constructing density gradient columns. J. Polym. Sci. 44, 505515.Google Scholar
Guimbard, D., Le Dizès, S., Le Bars, M., Le Gal, P. & Leblanc, S. 2010 Elliptic instability of a stratified fluid in a rotating cylinder. J. Fluid Mech. 660, 240257.Google Scholar
Hama, F. R. 1957 Three-dimensional vortex pattern behind a circular cylinder. J. Aero. Sci. 24 (156), 215221.Google Scholar
Henderson, D. 1997 Nonlinear dynamics and pattern formation in turbulent wake transition. J. Fluid Mech. 352, 65.Google Scholar
Karniadakis, G. E. & Triantafyllou, G. S. 1992 Three-dimensional dynamics and transition to turbulence in the wake of bluff objects. J. Fluid Mech. 238, 1.Google Scholar
Kerswell, R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83113.CrossRefGoogle Scholar
Le Dizès, S. 2008 Inviscid waves on a lamb-oseen vortex in a rotating stratified fluid: consequences on the elliptic instability. J. Fluid Mech. 597, 283303.CrossRefGoogle Scholar
Leweke, T. & Williamson, C. 1998 Three-dimensional instabilities in wake transition. Eur. J. Mech. 17, 571586.Google Scholar
Lin, J. T. & Pao, Y. H. 1979 Wakes in stratified fluids: a review. Annu. Rev. Fluid Mech. 11, 317338.Google Scholar
Meiburg, E. & Lasheras, J. C. 1988 Experimental and numerical investigation of the three-dimensional transitions in plane wakes. J. Fluid Mech. 190, 137.Google Scholar
Meunier, P. 2012a Stratified wake of a tilted cylinder. Part 1. Suppression of a von Kármán vortex street. J. Fluid Mech. 699, 174197.Google Scholar
Meunier, P. 2012b Stratified wake of a tilted cylinder. Part 2. Lee internal waves. J. Fluid Mech 699, 198215.Google Scholar
Meunier, P. & Spedding, G. 2004 A loss of memory in stratified momentum wakes. Phys. Fluids 16, 298305.Google Scholar
Meunier, P. & Spedding, G. 2006 Stratified propelled wakes. J. Fluid Mech. 552, 229256.Google Scholar
Norberg, C. 1994 An experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech. 258, 287.Google Scholar
Passaggia, P.-Y., Meunier, P. & Le Dizès, S. 2014 Response of a stratified boundary layer on a tilted wall to surface undulation. J. Fluid Mech. 751, 663684.Google Scholar
Sheard, G., Thompson, M. C. & Hourigan, K. 2003 Phys. Fluids 15, L68.Google Scholar
Spedding, G. R. 1997 The evolution of initially turbulent bluff-body wakes at high internal Froude number. J. Fluid Mech. 337, 283301.CrossRefGoogle Scholar
Sutherland, B. R. 2002 Large-amplitude internal wave generation in the Lee of step-shaped topography. Geophys. Res. Lett. 29 (16), 16-1–16–4.Google Scholar
Thompson, M., Hourigan, K. & Sheridan, J. 1994 Three-dimensional instabilities in the cylinder wake. Intl J. Expl Heat Transfer, Thermodyn. Fluid Mech. 12, 190196.Google Scholar
Thompson, M., Hourigan, K. & Sheridan, J. 1996 Three-dimensional instabilities in the wake of a circular cylinder. Exp. Therm. Fluid Sci. 12, 190196.Google Scholar
Thompson, M. C., Leweke, T. & Williamson, C. H. K. 2001 The physical mechanism of transition in bluff body wakes. J. Fluids Struct. 15, 607616.Google Scholar
Williamson, C. 1996a Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.Google Scholar
Williamson, C. H. K. 1996b Three-dimensional wake transition. J. Fluid Mech. 328, 345407.Google Scholar
Williamson, C. 1988 The existence of two stages in the transition to three-dimensionality of a circular cylinder wake. Phys. Fluids 31, 31653168.Google Scholar
Winters, K. B. & Armi, L. 2012 Hydraulic control of continuously stratified flow over an obstacle. J. Fluid Mech. 700, 502513.Google Scholar
Wu, J., Sheridan, J., Welsh, M. & Hourigan, K. 1996 Three-dimensional vortex structures in a cylinder wake. J. Fluid Mech. 312, 201222.Google Scholar
Xu, Y., Fernando, H. & Boyer, D. 1995 Turbulent wakes of stratified flow past a cylinder. Phys. Fluids 7, 22432255.Google Scholar
Zhang, H., Fey, U., Noack, B. R., Konig, M. & Eckelmann, H. 1995 On the transition of the cylinder wake. Phys. Fluids 7, 1.Google Scholar