Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T11:27:46.341Z Has data issue: false hasContentIssue false

Thermocapillary flows on heated substrates with sinusoidal topography

Published online by Cambridge University Press:  27 November 2018

Jaehyun Yoo
Affiliation:
School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
Jaewook Nam*
Affiliation:
School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
Kyung Hyun Ahn
Affiliation:
School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
*
Email address for correspondence: [email protected]

Abstract

Two-dimensional steady thermocapillary flows in a liquid layer over a substrate, which has a uniform temperature and sinusoidal topography, are investigated by asymptotic theory. Here, the buoyancy effect is negligible and the interface is not significantly disturbed under low Marangoni number and low capillary number. A temperature gradient along the gas/liquid interface causes recirculating flows. For a small aspect ratio, which yields a sinusoidal topography with a long wavelength relative to the mean depth of the liquid layer, the second-order solutions are obtained analytically. The basic solutions show vertical diffusion of heat and vorticity from the substrate and interface, respectively. In the second corrections, the horizontal diffusion of heat weakens the overall flow and the convection of heat intensifies it.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexeev, A., Gambaryan-Roisman, T. & Stephan, P. 2005 Marangoni convection and heat transfer in thin liquid films on heated walls with topography: experiments and numerical study. Phys. Fluids 17, 062106.Google Scholar
Becker, E. B., Carey, G. F. & Oden, J. T. 1981 Finite Elements: An Introduction. Prentice-Hall.Google Scholar
Birikh, R. V. 1966 Thermocapillary convection in a horizontal layer of liquid. J. Appl. Mech. Tech. Phys. 7, 4344.Google Scholar
Cormack, D. E., Leal, L. G. & Imberger, J. 1974 Natural convection in a shallow cavity with differentially heated end walls. Part 1. Asymptotic theory. J. Fluid Mech. 65, 209229.Google Scholar
Cuvelier, C. & Driessen, J. M. 1986 Thermocapillary free boundaries in crystal growth. J. Fluid Mech. 169, 126.Google Scholar
Eckert, K., Bestehorn, M. & Thess, A. 1998 Square cells in surface-tension-driven Bénard convection: experiment and theory. J. Fluid Mech. 356, 155197.Google Scholar
Evans, P. L. & Münch, A. 2006 Interaction of advancing fronts and meniscus profiles formed by surface-tension-gradient-driven liquid films. SIAM J. Appl. Maths 66, 16101631.Google Scholar
Fath, A., Horn, T., Gambaryan-Roisman, T., Stephan, P. & Bothe, D. 2015 Numerical and experimental analysis of short-scale Marangoni convection on heated structured surfaces. Intl J. Heat Mass Transfer 86, 764779.Google Scholar
Frumkin, V. & Oron, A. 2016 Liquid film flow along a substrate with an asymmetric topography sustained by the thermocapillary effect. Phys. Fluids 28, 082107.Google Scholar
Gambaryan-Roisman, T., Alexeev, A. & Stephan, P. 2005 Effect of the microscale wall topography on the thermocapillary convection within a heated liquid film. Exp. Therm. Fluid Sci. 29, 765772.Google Scholar
Gambaryan-Roisman, T. & Stephan, P. 2007 Thermocapillary convection and interface deformation in a liquid film within a micro-slot with structured walls. Microfluid. Nanofluid. 3, 207215.Google Scholar
Geri, M., Keshavarz, B., Mckinley, G. H. & Bush, J. W. M. 2017 Thermal delay of drop coalescence. J. Fluid Mech. 833, R3.Google Scholar
Gupta, A., Sbragaglia, M., Belardinelli, D. & Sugiyama, K. 2016 Lattice Boltzmann simulations of droplet formation in confined channels with thermocapillary flows. Phys. Rev. E 94, 063302.Google Scholar
Ismagilov, R. F., Rosmarin, D., Gracias, D. H., Stroock, A. D. & Whitesides, G. M. 2001 Competition of intrinsic and topographically imposed patterns in Bénard–Marangoni convection. Appl. Phys. Lett. 79, 439441.Google Scholar
Kabova, Y. O., Alexeev, A., Gambaryan-Roisman, T. & Stephan, P. 2006 Marangoni-induced deformation and rupture of a liquid film on a heated microstructured wall. Phys. Fluids 18, 012104.Google Scholar
Kőrösi, G. & Kováts, E. S. 1981 Density and surface tension of 83 organic liquids. J. Chem. Engng Data 26, 323332.Google Scholar
Mills, K. C., Keene, B. J., Brooks, R. F. & Shirali, A. 1998 Marangoni effects in welding. Phil. Trans. R. Soc. Lond. A 356, 911925.Google Scholar
Münch, A. 2002 The thickness of a Marangoni-driven thin liquid film emerging from a meniscus. SIAM J. Appl. Math. 62, 20452063.Google Scholar
Nam, J., Scriven, L. E. & Carvalho, M. S. 2009 Tracking birth of vortex in flows. J. Comput. Phys. 228, 45494567.Google Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.Google Scholar
Pham, T., Cheng, X. & Kumar, S. 2017 Drying of multicomponent thin films on substrates with topography. J. Polym. Sci. B: Polym. Phys. 55, 16811691.Google Scholar
Poling, B. E., Thomson, G. H., Friend, D. G., Rowley, R. L. & Wilding, W. V. 2008 Section 2. Physical and chemical data. In Perry’s Chemical Engineers’ Handbook (ed. Maloney, J. O.), 2-1–2-517. McGraw-Hill.Google Scholar
Poulikakos, D. & Bejan, A. 1983 The fluid dynamics of an attic space. J. Fluid Mech. 131, 251269.Google Scholar
Russo, A. J., Akau, R. L. & Jellison, J. L. 1990 Thermocapillary flow in pulsed laser beam weld pools. Welding J. 69, 2329.Google Scholar
Sadiq, I. M. R. 2012 First-order energy-integral model for thin Newtonian liquids falling along sinusoidal furrows. Phys. Rev. E 85, 036309.Google Scholar
Sadiq, I. M. R., Gambaryan-Roisman, T. & Stephan, P. 2012 Falling liquid films on longitudinal grooved geometries: integral boundary layer approach. Phys. Fluids 24, 014104.Google Scholar
Saprykin, S., Trevelyan, P. M. J., Koopmans, R. J. & Kalliadasis, S. 2007 Free-surface thin-film flows over uniformly heated topography. Phys. Rev. E 75, 026306.Google Scholar
Schatz, M. F. & Neitzel, G. P. 2001 Experiments on thermocapillary instabilities. Annu. Rev. Fluid Mech. 33, 93127.Google Scholar
Schwabe, D. & Scharmann, A. 1981 Marangoni convection in open boat and crucible. J. Crystal Growth. 52, 435449.Google Scholar
Scriven, L. E. 1960 Dynamics of a fluid interface. Chem. Engng Sci. 12, 98108.Google Scholar
Sen, A. K. & Davis, S. H. 1982 Steady thermocapillary flows in two-dimensional slots. J. Fluid Mech. 121, 163186.Google Scholar
Sirignano, W. A. & Glassman, I. 1970 Flame spreading above liquid fuels: surface-tension-driven flows. Combust. Sci. Technol. 1, 307312.Google Scholar
Strani, M., Piva, R. & Graziani, G. 1983 Thermocapillary convection in a rectangular cavity: asymptotic theory and numerical simulation. J. Fluid Mech. 130, 347376.Google Scholar
Teletzke, G. F., Davis, H. T. & Scriven, L. E. 1988 Wetting hydrodynamics. Rev. Phys. Appl. 23, 9891007.Google Scholar
Tomita, H. & Abe, K. 2000 Numerical simulation of pattern formation in the Bénard–Marangoni convection. Phys. Fluids 12, 13891400.Google Scholar
Torrance, K. E. 1971 Subsurface flows preceding flame spread over a liquid fuel. Combust. Sci. Technol. 3, 133143.Google Scholar
Van Dyke, M. 1964 Perturbation Methods in Fluid Mechanics. The Parabolic Press.Google Scholar
Weinstein, S. J. & Palmer, H. J. 1997 Capillary hydrodynamics and interfacial phenomena. In Liquid Film Coating (ed. Kistler, S. F. & Schweizer, P. M.), pp. 1962. Chapman and Hall.Google Scholar
Zeng, W., Shu, L., Li, Q., Chen, S., Wang, F. & Tao, X. M. 2014 Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26, 53105336.Google Scholar
Zienkiewicz, O. C. & Taylor, R. L. 2000 The Finite Element Method. Butterworth-Heinemann.Google Scholar