Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T19:21:14.505Z Has data issue: false hasContentIssue false

Thermocapillary convection in a rectangular cavity: asymptotic theory and numerical simulation

Published online by Cambridge University Press:  20 April 2006

M. Strani
Affiliation:
Istituto di Meccanica Applicata, Università di Roma, Rome, Italy
R. Piva
Affiliation:
Istituto di Meccanica Applicata, Università di Roma, Rome, Italy
G. Graziani
Affiliation:
Istituto di Meccanica Applicata, Università di Roma, Rome, Italy

Abstract

The steady motion of a Newtonian fluid in a rectangular enclosure open on its upper side is considered under the action of thermocapillary forces due to surface-tension gradients along the free surface. An asymptotic solution, in the limiting case of the aspect ratio A → 0, is found and discussed for the cases where the surface deformation may be neglected, that is for contact angles at the lateral walls equal to ½π and very small values of the crispation number. The flow field has also been analysed in a wide range of the governing parameters A, Mg, Cr, by a computational model particularly appropriate to simulate free-surface flows. For A [Lt ] 1 the numerical results confirm the behaviour predicted by the asymptotic theory, while for A [ges ] 1 several characteristic features of the flow-field structure are emphasized. For increasing Mg, the surface layer under the free surface maintains in the mid-section a constant value, dependent only on A, and decreases together with the thermal boundary-layer thickness near the lateral walls. For increasing A, the motion remains confined in a region near the free surface; hence the overall Nu, starting from the pure conduction value (Nu → 1 as A → 0) inccreases with A, reaching a maximum, to tend again to unity as A → ∞. The surface deformation, at least for very small values of the crispation number, seems to have a negligible influence on the qualitative aspects of the flow-field structure.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bedeaux, D., Albano, A. M. & Mazur, P. 1976 Physica 82A, 438.
Bourgeois, S. V. & Brasheors, M. R. 1977 Prog. Astron. Aero. 52, 189.
Chang, C. E. 1978 J. Crystal Growth 44, 168.
Chang, C. E. & Wilcox, W. R. 1976 Int. J. Heat Mass Transfer 19, 355.
Chun, C. H. 1980 Acta Astronautica 7, 479.
Chung, C. H. & Wuest, W. 1978 Acta Astronautica 5, 681.
Clark, P. A. & Wilcox, W. R. 1980 J. Crystal Growth 50, 461.
Cormack, D. E., Leal, L. G. & Imberger, J. 1974a J. Fluid Mech. 65, 209.
Cormack, D. E., Leal, L. G. & Seinfeld, J. H. 1974b J. Fluid Mech. 65, 231.
Gill, A. E. 1966 J. Fluid Mech. 26, 515.
Graziani, G., Strani, M. & Piva, R. 1982 Acta Astronautica 9, 4.
Harlow, F. W. & Welch, J. E. 1965 Phys. Fluids, 8, 2182.
Hirt, C. W. & Cook, J. L. 1972 J. Comp. Phys. 10.
Joseph, D. D. & Fosdick, R. L. 1972 Arch. Rat. Mech. Anal. 49, 321.
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice Hall.
Napolitano, L. G. 1978 Acta Astronautica 5, 655.
Ostrach, S. 1982 Ann. Rev. Fluid Mech. 14, 313.
Ostrach, S. & Pradhan, A. 1978 AIAA J. 16, 419.
Piva, R., DI CARLO, A. & Guj, G. 1980 Comp. & Fluids 8.
Piva, R., Strani, M. & Graziani, G. 1981 In Proc. AIDAA VI Natl Congr. Rome.
Schlichting, H. 1960 Boundary-Layer Theory. McGraw-Hill.
Schwabe, D. 1981 Physicochem. Hydrodyn. 2, 263.
Schwabe, D. & Scharmann, A. 1981 J. Crystal Growth 52, 435.
Schwabe, D., Scharmann, A. & Preisser, F. 1979 In Proc. 3rd Euro. Symp. on Material Sciences in Space, Grenoble. ESA SP-142.
Sen, A. K. & Davis, S. H. 1982 J. Fluid Mech. 121, 163.
Strani, M. & Piva, R. 1982 Int. J. Numer. Meth. Fluids 2, 367.
Strani, M., Piva, R. & Graziani, G. 1982 Thermocapillary convection in a rectangular cavity: part 1, asymptotic theory. IMA Rep. 82–5, Istituto di Meccanica Applicata, Università di Roma.
Yih, C. S. 1968 Phys. Fluids 11, 477.