Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T16:01:18.229Z Has data issue: false hasContentIssue false

Thermal effect on large-aspect-ratio Couette–Taylor system: numerical simulations

Published online by Cambridge University Press:  14 April 2015

Changwoo Kang
Affiliation:
Turbulence Control Laboratory, Department of Mechanical Engineering, Inha University, Inha-Ro 100, Nam-Gu, Incheon 402-751, Republic of Korea
Kyung-Soo Yang
Affiliation:
Turbulence Control Laboratory, Department of Mechanical Engineering, Inha University, Inha-Ro 100, Nam-Gu, Incheon 402-751, Republic of Korea
Innocent Mutabazi*
Affiliation:
Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294, CNRS – Université du Havre, 53 Rue de Prony, CS 80540, 76058 Le Havre CEDEX, France
*
Email address for correspondence: [email protected]

Abstract

We have performed numerical simulations of the flow in a large-aspect-ratio Couette–Taylor system with rotating inner cylinder and with a radial temperature gradient. The aspect ratio was chosen in such a way that the base state is in the conduction regime. Away from the endplates, the base flow is a superposition of an azimuthal flow induced by rotation and an axial flow (large convective cell) induced by the temperature gradient. For a fixed rotation rate of the inner cylinder in the subcritical laminar regime, the increase of the temperature difference imposed on the annulus destabilizes the convective cell to give rise to co-rotating vortices as primary instability modes and to counter-rotating vortices as secondary instability modes. The space–time properties of these vortices have been computed, together with the momentum and heat transfer coefficients. The temperature gradient enhances the momentum and heat transfer in the flow independently of its sign.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, M. & Weidman, P. D. 1990 On the stability of circular Couette flow with radial heating. J. Fluid Mech. 220, 5384.CrossRefGoogle Scholar
Auer, M., Busse, F. H. & Gangler, E. 1996 Instabilities of flows between differentially rotating coaxial vertical cylinders in the presence of a radial temperature gradient. Eur. J. Mech. (B/Fluids) 15 (5), 605618.Google Scholar
Bahloul, A., Mutabazi, I. & Ambari, A. 2000 Codimension 2 points in the flow inside a cylindrical annulus with a radial temperature gradient. Eur. Phys. J., Appl. Phys. 9 (3), 253264.Google Scholar
Balbus, S. A. 2011 Fluid dynamics: a turbulent matter. Nature 470, 475476.CrossRefGoogle ScholarPubMed
Ball, K. S. & Farouk, B. 1989 A flow visualization of the effects of buoyancy on Taylor vortices. Phys. Fluids A 1, 15021507.CrossRefGoogle Scholar
Ball, K. S., Farouk, B. & Dixit, V. C. 1989 An experimental study of heat transfer in a vertical annulus with a rotating inner cylinder. Intl J. Heat Mass Transfer 32 (8), 15171527.CrossRefGoogle Scholar
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 1960 Transport Phenomena. Wiley.Google Scholar
Chen, J.-C. & Kuo, J.-Y. 1990 The linear stability of steady circular Couette flow with a small radial temperature gradient. Phys. Fluids A 2, 15851591.Google Scholar
Childs, P. R. N. 2010 Rotating Flow. Butterworth-Heinemann.Google Scholar
Choi, I. G. & Korpela, S. A. 1980 Stability of a conduction regime of natural convection in a tall vertical annulus. J. Fluid Mech. 99 (4), 725738.Google Scholar
Czarny, O., Serre, E., Bontoux, P. & Lueptow, R. M. 2003 Interaction between Ekman pumping and the centrifugal instability in Taylor–Couette flow. Phys. Fluids 15 (2), 467477.Google Scholar
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.Google Scholar
Dubrulle, B. & Hersant, F. 2002 Momentum transport and torque scaling in Taylor–Couette flow from an analogy with turbulent convection. Eur. Phys. J. B 26 (3), 379386.Google Scholar
Eckhardt, B., Grossmann, S. & Lohse, D. 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.Google Scholar
Fénot, M., Bertin, Y., Dorignac, E. & Lalizel, G. 2011 A review of heat transfer between concentric rotating cylinders with or without axial flow. Intl J. Therm. Sci. 50 (7), 11381155.CrossRefGoogle Scholar
Guillerm, R.2010 Etude expérimentale des instabilités thermo-hydrodynamiques dans un système de Couette–Taylor. Thèse de Doctorat de Physique, Université du Havre.Google Scholar
Kang, C., Yang, K.-S. & Mutabazi, I. 2009 The effect of radial temperature gradient on the circular-Couette flow. J. Comput. Fluids Engng 14 (3), 1624.Google Scholar
Kedia, R., Hunt, M. L. & Colonius, T. 1998 Numerical simulations of heat transfer in Taylor–Couette flow. Trans. ASME: J. Heat Transfer 120 (1), 6571.Google Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59 (2), 308323.Google Scholar
Kreith, F. 1968 Convection heat transfer in rotating systems. In Advances in Heat Transfer, pp. 129251. Academic.Google Scholar
Kuo, D.-C. & Ball, K. S. 1997 Taylor–Couette flow with buoyancy: onset of spiral flow. Phys. Fluids 9 (10), 28722884.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1986 Cours de Physique Théorique, Mécanique des Fluides, vol. 6. MIR.Google Scholar
Lee, Y. N. & Minkowycz, W. J. 1989 Heat transfer characteristics of annulus of twocoaxial cylinders with one cylinder rotating. Intl J. Heat Mass Transfer 32 (4), 711722.CrossRefGoogle Scholar
Lepiller, V., Goharzadeh, A., Prigent, A. & Mutabazi, I. 2008 Weak temperature gradient effect on the stability of circular Couette flow. Eur. J. Phys. B 61 (4), 445455.Google Scholar
Lepiller, V., Prigent, A., Dumouchel, F. & Mutabazi, I. 2007 Transition to turbulence in a tall annulus submitted to a radial temperature gradient. Phys. Fluids 19 (5), 054101.Google Scholar
Lepiller, V., Yoon, D.-H., Prigent, A., Yang, K.-S. & Mutabazi, I.2006 Mixed convection in a differentially rotating annulus. In Proceedings of FEDSM2006, ASME Joint US–European Fluids Engineering Summer Meeting, Miami, FL, 2006. Paper No. FEDSM2006-98251, pp. 983-991; 9 pages. ASME.Google Scholar
Le Quéré, P. & Pécheux, J. 1989 Numerical simulation of multiple flow transitions in axisymmetric annulus convection. J. Fluid Mech. 206, 517544.CrossRefGoogle Scholar
Lopez, J. M., Marques, F. & Avila, M. 2013 The Boussinesq approximation in rapidly rotating flows. J. Fluid Mech. 737, 5677.CrossRefGoogle Scholar
Manneville, P. & Czarny, O. 2009 Aspect-ratio dependence of transient Taylor vortices close to threshold. Theor. Comput. Fluid Dyn. 23 (1), 1536.CrossRefGoogle Scholar
McFadden, G. B., Coriell, S. R., Murray, B. T., Glicksman, M. E. & Selleck, M. E. 1990 Effect of a crystal–melt interface on Taylor-vortex flow. Phys. Fluids A 2 (5), 700705.Google Scholar
Mutabazi, I. & Bahloul, A. 2002 Stability analysis of a vertical curved channel flow with a radial temperature gradient. Theor. Comput. Fluid Dyn. 16 (1), 7990.Google Scholar
Snyder, H. A. & Karlsson, S. K. F. 1964 Experiments on the stability of Couette motion with a radial temperature gradient. Phys. Fluids 7 (10), 16961706.Google Scholar
Sorour, M. M. & Coney, J. E. R. 1979 The effect of temperature gradient on the stability of flow between vertical, concentric, rotating cylinders. J. Mech. Engng Sci. 21, 403409.CrossRefGoogle Scholar
de Vahl Davis, G. & Thomas, R. W. 1969 Natural convection between concentric vertical cylinders. Phys. Fluids 12 (Suppl. II), 198207.Google Scholar
Yoshikawa, H. N., Nagata, M. & Mutabazi, I. 2013 Instability of the vertical annular flow with a radial heating and rotating inner cylinder. Phys. Fluids 25 (11), 114104.CrossRefGoogle Scholar