Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-21T08:07:21.470Z Has data issue: false hasContentIssue false

Theory of vaporization of a rigid spherical droplet in slowly varying rectilinear flow at low Reynolds numbers

Published online by Cambridge University Press:  21 May 2007

G. DEL ÁLAMO
Affiliation:
Center for Energy Research, Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093-0411, USA
F. A. WILLIAMS
Affiliation:
Center for Energy Research, Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, 92093-0411, USA

Abstract

The vaporization of a droplet in rectilinear motion relative to a stagnant gaseous atmosphere is addressed for the limit of low Reynolds numbers and slow variation of the droplet velocity. Approximations are introduced that enable a formal asymptotic analysis to be performed with a minimum of complexity. It is shown that, under the conditions addressed, there is an inner region in the vicinity of the droplet within which the flow is nearly quasi-steady except during short periods of time when the acceleration changes abruptly, and there is a fully time-dependent outer region in which departures of velocities and temperatures from those of the ambient medium are small. Matched asymptotic expansions, followed by a Green's function analysis of the outer region enable expressions to be obtained for the velocity and temperature fields and for the droplet drag and vaporization rate. The results are applied to problems in which the droplet experiences constant acceleration, constant deceleration and oscillatory motion. The results, which identify dependences on the Prandtl number and the transfer number, are intended to be compared with experimental measurements on droplet behaviours in time-varying flows.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramovitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions, p. 228.Google Scholar
Abramzon, B. & Elata, C. 1984 Unsteady heat transfer from a single sphere in Stokes flow. Intl J. Heat Mass Transfer 27, 687695.CrossRefGoogle Scholar
Ackerman, M. D. & Williams, F. A. 2005 A simplified model for droplet combustion in a slow convective flow. Combust. Flame 143, 599612.Google Scholar
Acrivos, A. & Taylor, T. D. 1962 Heat and mass transfer from single spheres in Stokes flow. Phys. Fluids 5, 387394.CrossRefGoogle Scholar
Asmolov, E. S. 2001 Flow past a sphere undergoing unsteady rectilinear motion and unsteady drag at small Reynolds number. J. Fluid Mech. 446, 95119.CrossRefGoogle Scholar
Batchelor, G. K. 1979 Mass transfer from a particle suspended in fluid with a steady linear ambient velocity distribution. J. Fluid Mech. 95, 369400.CrossRefGoogle Scholar
Brenner, H. 1963 Forced convection heat and mass transfer at small Peclet numbers from a particle of arbitrary shape. Chem. Engng Sci. 18, 63148.Google Scholar
Chiu, H. H. 2000 Advances and challenges in droplet and spray combustion. I. Towards a unified theory of droplet aerothermochemistry. Prog. Energy Combust. Sci. 26, 381416.CrossRefGoogle Scholar
Choudhury, P. N. & Drake, D. G. 1971 Unsteady heat transfer from a sphere in a low Reynolds number flow. Q. J. Mech. Appl. Maths 24, 2336.CrossRefGoogle Scholar
Chung, J. N., Ayyaswamy, P. S. & Sadhal, S. S. 1984 Laminar condensation on a moving drop. Part 1. Singular perturbation technique. J. Fluid Mech. 139, 105130.CrossRefGoogle Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Academic.Google Scholar
Crespo, A. & Liñán, A. 1975 Unsteady effects in droplet evaporation and combustion. Combust. Sci. Technol. 11, 918.CrossRefGoogle Scholar
Dwyer, H. A. 1989 Calculation of droplet dynamics in high temperature environment. Prog. Energy Combust. Sci. 15, 131158.Google Scholar
Faeth, G. M. 1977 Current status of droplet and liquid combustion. Prog. Energy Combust. Sci. 3, 191234.CrossRefGoogle Scholar
Fendell, F. E. 1968 Decompositional burning of a droplet in a small Peclet number flow. AIAA J. 6, 19461953.Google Scholar
Fendell, F. E., Sprankle, M. L. & Dodson, D. S. 1966 Thin-flame theory for a fuel droplet in slow viscous flow. J. Fluid Mech. 26, 267280.Google Scholar
Feng, Z. G. & Michaelides, E. E. 1996 Unsteady heat transfer from a sphere at small Peclet numbers. Trans. ASME I: J. Fluids Engng 118, 96102.Google Scholar
Fuchs, N. A. 1959 Evaporation and Droplet Growth in Gaseous Media. Pergamon.Google Scholar
Godsave, G. A. E. 1953 Studies of the combustion of drops in a fuel spray: the burning of single drops of fuel. Proc. Combust. Inst. 4, 818830.CrossRefGoogle Scholar
Gogos, G., Sadhal, S. S., Ayyaswamy, P. S. & Sundararajan, T. 1986 Thin-flame theory for the combustion of a moving liquid-drop. Effects due to variable density. J. Fluid Mech. 171, 121144.Google Scholar
Hermanns, M. 2006 High-order numerical methods applied to the analysis of transport phenomena in combustion. PhD thesis, Universidad Politécnica de Madrid, Madrid, Spain, pp. 45–77.Google Scholar
Hinch, E. J. 1993 The approach to steady state in Oseen flows. J. Fluid Mech. 256, 601604.Google Scholar
Jog, M. A., Ayyaswamy, P. S. & Cohen, I. M. 1996 Evaporation and combustion of slowly moving luiquid fuel droplets. J. Fluid Mech. 307, 135165.CrossRefGoogle Scholar
Law, C. K. 1982 Recent advances in droplet vaporization and combustion. Prog. Energy Combust. Sci. 8, 171201.CrossRefGoogle Scholar
Levich, V. G. 1962 Physicochemical Hydrodynamics, pp. 395457. Prentice-Hall.Google Scholar
Ockendon, R. J. 1968 The unsteady motion of a small sphere in a viscous liquid. J. Fluid Mech. 34, 229239.CrossRefGoogle Scholar
Oseen, C. W. 1910 Ueber die Stokes'sche formel, und über eine verwandte aufgave in der Hydrodynamik. Ark. Mat. Astr. Fys. 6, 120.Google Scholar
Pozrikidis, C. 1997 Unsteady heat or mass transport from a suspended particle at low Péclet numbers. J. Fluid Mech. 334, 111133.CrossRefGoogle Scholar
Proudman, I. & Pearson, J. R. A. 1957 Expansions of small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2, 237262.Google Scholar
Sadhal, S. S. & Ayyaswamy, P. S. 1983 Flow past a fluid drop with a large non-uniform radial velocity. J. Fluid Mech. 133, 6581.CrossRefGoogle Scholar
Sano, T. 1981 Unsteady flow past a sphere at low Reynolds number. J. Fluid Mech. 112, 433441.CrossRefGoogle Scholar
Sirignano, W. 1983 Fuel-droplet vaporization and spray combustion theory. Prog. Energy Combust. Sci. 9, 299322.Google Scholar
Sirignano, W. A. 1999 Fluid Dynamics and Transport of Droplets and Sprays, pp. 776. Cambridge University Press.CrossRefGoogle Scholar
Spalding, D. B. 1953 The combustion of liquid fuels. Proc. Combust. Inst. 4, 847864.CrossRefGoogle Scholar
Stokes, G. G. 1851 On the effect of internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8106.Google Scholar
Waldman, C. H. 1975 Theory of non-steady state droplet combustion. Proc. Combust. Inst. 5, 429442.CrossRefGoogle Scholar
Wichman, I. S. & Baum, H. R. 1993 A solution procedure for low Reynolds number combustion problems under microgravity conditions. In Heat Transfer in Microgravity (ed. Avedisan, C. T. & Arpaci, V. A., pp. 111117. American Society of Mechanical Engineers.Google Scholar
Williams, A. 1973 Combustion of droplets of liquid fuels: a review. Combust. Flame 21, 131.CrossRefGoogle Scholar
Williams, F. A. 1965 Combustion Theory, pp. 4757. Addison–Wesley.Google Scholar
Williams, F. A. 1985 Combustion Theory, 2nd edn, pp. 5269. Addison-Wesley.Google Scholar