Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-03T00:32:46.109Z Has data issue: false hasContentIssue false

Theoretical predictions for the rheology of dispersions of highly deformable particles under large amplitude oscillatory shear

Published online by Cambridge University Press:  09 June 2020

Christoph Kammer
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA19104-6315, USA
Pedro Ponte Castañeda*
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA19104-6315, USA Graduate Program in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA19104-6315, USA
*
Email address for correspondence: [email protected]

Abstract

This work is concerned with the oscillatory rheology of non-colloidal suspensions of highly deformable viscoelastic particles in Newtonian fluids under simple shear loading. To this end, use is made of the homogenization model of Avazmohammadi & Ponte Castañeda (J. Fluid Mech., vol. 763, 2015, pp. 386–432) accounting for the time evolution of the average particle shape and orientation. For small excitation amplitudes, the equations reduce to the small-strain Oldroyd model with expressions for the storage and loss moduli, $G^{\prime }$ and $G^{\prime \prime }$, that recover those of Roscoe (J. Fluid Mech., vol. 28 (2), 1967, pp. 273–293) for small particle concentrations. However, at sufficiently large concentrations, $G^{\prime }$ and $G^{\prime \prime }$ may intersect, such that $G^{\prime }>G^{\prime \prime }$ in a given frequency range. In the large amplitude oscillatory shear (LAOS) regime, the behaviour of $G^{\prime }$ and $G^{\prime \prime }$ with increasing strain amplitude is consistent with type I or type III behaviour, in the terminology of Hyun et al. (J. Non-Newtonian Fluid Mech., vol. 107 (1–3), 2002, pp. 51–65), depending on the particle properties and concentration. In addition, the rheology is characterized by means of stress waveforms and Lissajous–Bowditch cycles in a Pipkin diagram. By accounting for the microstructure evolution, the model captures a number of nonlinear features commonly observed in the LAOS rheology of complex fluids, including a variety of distorted stress waveforms that manifest themselves in complex intracycle behaviour, as well as secondary loops. Furthermore, as a consequence of directional biases associated with the large deformations of the particles, the model predicts non-vanishing normal stress differences whose characteristic limit cycles are also presented in Pipkin space and reveal the formation of secondary loops for suspensions of Gent particles. However, it should be emphasized that the sources of these nonlinear rheological features for soft particle suspensions are very different from those for rigid particle colloidal systems and, in contrast to the colloidal systems, manifest themselves at dilute volume fractions of the particles.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agoras, M., Avazmohammadi, R. & Ponte Castañeda, P. 2016 Incremental variational procedure for elasto-viscoplastic composites and application to polymer- and metal-matrix composites reinforced by spheroidal elastic particles. Intl J. Solids Struct. 97–98, 668686.CrossRefGoogle Scholar
Avazmohammadi, R. & Ponte Castañeda, P. 2015 The rheology of non-dilute dispersions of highly deformable viscoelastic particles in Newtonian fluids. J. Fluid Mech. 763, 386432.CrossRefGoogle Scholar
Avazmohammadi, R. & Ponte Castañeda, P. 2016 Macroscopic rheological behavior of suspensions of soft solid particles in yield stress fluids. J. Non-Newtonian Fluid Mech. 234, 139161.CrossRefGoogle Scholar
Barthés-Biesel, D. 2016 Motion and deformation of elastic capsules and vesicles in flow. Annu. Rev. Fluid Mech. 48 (1), 2552.CrossRefGoogle Scholar
Cerf, R. 1952 On the frequency dependence of the viscosity of high polymer solutions. J. Chem. Phys. 20 (3), 395402.CrossRefGoogle Scholar
Dealy, J. M. & Wissbrun, K. F. 1990 Melt Rheology and Its Role in Plastics Processing: Theory and Applications. Van Nostrand Reinhold.Google Scholar
Desse, M., Fraiseau, D., Mitchell, J. & Budtova, T. 2010 Individual swollen starch granules under mechanical stress: evidence for deformation and volume loss. Soft Matt. 6 (2), 363369.CrossRefGoogle Scholar
Eshelby, J. D. 1957 The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241 (1226), 376396.Google Scholar
Ewoldt, R. H., Hosoi, A. E. & McKinley, G. H. 2008 New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 52 (6), 14271458.CrossRefGoogle Scholar
Ewoldt, R. H. & McKinley, G. H. 2010 On secondary loops in LAOS via self-intersection of Lissajous–Bowditch curves. Rheol. Acta 49 (2), 213219.CrossRefGoogle Scholar
Ewoldt, R. H., Winter, P., Maxey, J. & McKinley, G. H. 2010 Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol. Acta 49 (2), 191212.CrossRefGoogle Scholar
Fröhlich, H. & Sack, R. 1946 Theory of the rheological properties of dispersions. Proc. R. Soc. Lond. A 185 (1003), 415430.Google ScholarPubMed
Gao, T. & Hu, H. H. 2009 Deformation of elastic particles in viscous shear flow. J. Comput. Phys. 228 (6), 21322151.CrossRefGoogle Scholar
Gao, T., Hu, H. H. & Ponte Castañeda, P. 2011 Rheology of a suspension of elastic particles in a viscous shear flow. J. Fluid Mech. 687, 209237.CrossRefGoogle Scholar
Gao, T., Hu, H. H. & Ponte Castañeda, P. 2012 Shape dynamics and rheology of soft elastic particles in a shear flow. Phys. Rev. Lett. 108 (5), 058302.CrossRefGoogle Scholar
Gao, T., Hu, H. H. & Ponte Castañeda, P. 2013 Dynamics and rheology of elastic particles in an extensional flow. J. Fluid Mech. 715, 573596.CrossRefGoogle Scholar
Gent, A. N. 1996 A new constitutive relation for rubber. Rubber Chem. Tech. 69, 5961.CrossRefGoogle Scholar
Goddard, J. D. & Miller, C. 1967 Nonlinear effects in the rheology of dilute suspensions. J. Fluid Mech. 28 (04), 657673.CrossRefGoogle Scholar
Hyun, K., Kim, S. H., Ahn, K. H. & Lee, S. J. 2002 Large amplitude oscillatory shear as a way to classify the complex fluids. J. Non-Newtonian Fluid Mech. 107 (1–3), 5165.CrossRefGoogle Scholar
Hyun, K., Wilhelm, M., Klein, C. O., Cho, K. S., Nam, J. G., Ahn, K. H., Lee, S. J., Ewoldt, R. H. & McKinley, G. H. 2011 A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. (Oxford) 36 (12), 16971753.CrossRefGoogle Scholar
Joseph, D. D. 1990 Fluid Dynamics of Viscoelastic Liquids. Springer.CrossRefGoogle Scholar
Kailasam, M. & Ponte Castañeda, P. 1998 A general constitutive theory for linear and nonlinear particulate media with microstructure evolution. J. Mech. Phys. Solids 46 (3), 427465.CrossRefGoogle Scholar
Kailasam, M., Ponte Castañeda, P. & Willis, J. R. 1997 The effect of particle size, shape, distribution and their evolution on the constitutive response of nonlinearly viscous composites. I. Theory. Phil. Trans. R. Soc. Lond. A 355 (1730), 18351852.CrossRefGoogle Scholar
Lin, N. Y. C., Goyal, S., Cheng, X., Zia, R. N., Escobedo, F. A. & Cohen, I. 2013 Far-from-equilibrium sheared colloidal liquids: disentangling relaxation, advection, and shear-induced diffusion. Phys. Rev. E 88, 062309.Google ScholarPubMed
Maxey, M. 2017 Simulation methods for particulate flows and concentrated suspensions. Annu. Rev. Fluid Mech. 49 (1), 171193.CrossRefGoogle Scholar
Morris, J. F. 2009 A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol. Acta 48 (8), 909923; Workshop on Rheophysics, ESPCI, Paris, France, Jan. 07-07, 2008.CrossRefGoogle Scholar
Pal, R. 2003 Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes. J. Biomech. 36 (7), 981989.CrossRefGoogle ScholarPubMed
Pipkin, A. C. 1972 Lectures on Viscoelasticity Theory. Springer.CrossRefGoogle Scholar
Ponte Castañeda, P. 1991 The effective mechanical-properties of nonlinear isotropic composites. J. Mech. Phys. Solids 39 (1), 4571.CrossRefGoogle Scholar
Ponte Castañeda, P. & Willis, J. R. 1995 The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Solids 43 (12), 19191951.CrossRefGoogle Scholar
Rogers, S. A. 2017 In search of physical meaning: defining transient parameters for nonlinear viscoelasticity. Rheol. Acta 56 (5), 501525.CrossRefGoogle Scholar
Roscoe, R. 1967 On the rheology of a suspension of viscoelastic spheres in a viscous liquid. J. Fluid Mech. 28 (2), 273293.CrossRefGoogle Scholar
Song, K. W., Kim, Y. S. & Chang, G. S. 2006 Rheology of concentrated xanthan gum solutions: steady shear flow behavior. Fibers Polym. 7 (2), 129138.CrossRefGoogle Scholar
Sugiyama, K., Ii, S., Takeuchi, S., Takagi, S. & Matsumoto, Y. 2011 A full Eulerian finite difference approach for solving fluid–structure coupling problems. J. Comput. Phys. 230 (3), 596627.CrossRefGoogle Scholar
Swan, J. W., Furst, E. M. & Wagner, N. J. 2014 The medium amplitude oscillatory shear of semi-dilute colloidal dispersions. Part I. Linear response and normal stress differences. J. Rheol. 58 (2), 307337.CrossRefGoogle Scholar
Villone, M. M., Greco, F., Hulsen, M. A. & Maffettone, P. L. 2014a Simulations of an elastic particle in Newtonian and viscoelastic fluids subjected to confined shear flow. J. Non-Newtonian Fluid Mech. 210, 4755.CrossRefGoogle Scholar
Villone, M. M., Hulsen, M. A., Anderson, P. D. & Maffettone, P. L. 2014b Simulations of deformable systems in fluids under shear flow using an arbitrary Lagrangian Eulerian technique. Comput. Fluids 90, 88100.CrossRefGoogle Scholar
Villone, M. M. & Maffettone, P. L. 2019 Dynamics, rheology, and applications of elastic deformable particle suspensions: a review. Rheol. Acta 58 (3), 109130.CrossRefGoogle Scholar
Wetzel, E. D. & Tucker, C. L. 2001 Droplet deformation in dispersions with unequal viscosities and zero interfacial tension. J. Fluid Mech. 426, 199228.CrossRefGoogle Scholar
Wu, J. & Aidun, C. K. 2010 Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force. Intl J. Numer. Meth. Fluids 62 (7), 765783.Google Scholar