Hostname: page-component-669899f699-swprf Total loading time: 0 Render date: 2025-04-29T06:43:10.005Z Has data issue: false hasContentIssue false

Symmetry-breaking induced exceptional points in the thermoacoustic spectrum of annular combustors

Published online by Cambridge University Press:  28 April 2025

Sylvain C. Humbert*
Affiliation:
Chair of Fluid Dynamics, ISTA, Technische Universität Berlin, Berlin, Germany
Alessandro Orchini*
Affiliation:
Chair of Nonlinear Thermo-Fluid Mechanics, ISTA, Technische Universität Berlin, Berlin, Germany
*
Corresponding authors: Sylvain C. Humbert, [email protected]; Alessandro Orchini, [email protected]
Corresponding authors: Sylvain C. Humbert, [email protected]; Alessandro Orchini, [email protected]

Abstract

Many fluid flow configurations nominally contain symmetries, which are always imperfect in real systems. In this study, we reduce the degree of rotational symmetry and break the mirror symmetry of an annular combustor’s thermoacoustic model by using non-uniform flame response distributions. It is known that, in the linear regime, asymmetries lift the degeneracy of some azimuthal thermoacoustic eigenvalues, which are nominally degenerate in the symmetric case. In this work, we prove that a second asymmetric perturbation, which does not restore any trivial symmetry, can be exploited to create an exceptional point (EP). If the only source of asymmetry is the non-uniform distribution of flame responses, at this symmetry-breaking induced EP the single remaining eigenvector is a perfectly spinning mode. We demonstrate that symmetry-breaking induced EPs may be linearly unstable. For an EP obtained for vanishingly small asymmetric perturbations, the linearly stable/unstable nature of the EP follows that of the degenerate eigenvalue of the perfectly symmetric system. Our results are derived theoretically with a low-order model, and validated on a state-space model extracted from experimental data.

Type
JFM Rapids
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bauerheim, M., Salas, P., Nicoud, F. & Poinsot, T. 2014 Symmetry breaking of azimuthal thermo-acoustic modes in annular cavities: a theoretical study. J. Fluid Mech. 760, 431465.CrossRefGoogle Scholar
Berenbrink, P. & Hoffmann, S. 2000 Suppression of dynamic combustion instabilities by passive and active means. ASME Turbo Expo, vol. 2, V002T02A001.Google Scholar
Bothien, M.R., Noiray, N. & Schuermans, B. 2015 Analysis of azimuthal thermo-acoustic modes in annular gas turbine combustion chambers. J. Eng. Gas Turbines Power 137 (6), 061505.CrossRefGoogle Scholar
Bourquard, C. & Noiray, N. 2019 Stabilization of acoustic modes using Helmholtz and Quarter-Wave resonators tuned at exceptional points. J. Sound Vib. 445, 288307.CrossRefGoogle Scholar
Buschmann, P.E. 2022 On the role of symmetry and degeneracy in nonlinear thermoacoustic eigenproblems with application to can-annular combustors. Phd thesis, NTNU Trondheim, Norway.Google Scholar
Casel, M. & Ghani, A. 2024 A novel method for stable thermoacoustic system design based on exceptional points – Part I: conceptualization. Combust. Flame 267, 113559.CrossRefGoogle Scholar
Crawford, J.D. & Knobloch, E. 1991 Symmetry and symmetry breaking bifurcations in fluid dynamics. Annu. Rev. Fluid Mech. 23 (1), 341387.CrossRefGoogle Scholar
Ding, K., Ma, G., Xiao, M., Zhang, Z.Q. & Chan, C.T. 2016 Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Phys. Rev. X 6 (2), 021007.Google Scholar
Dowling, A.P. & Stow, S.R. 2003 Acoustic analysis of gas turbine combustors. J. Propul. Power 19 (5), 751764.CrossRefGoogle Scholar
Durox, D., Schuller, T., Noiray, N. & Candel, S. 2009 Experimental analysis of nonlinear flame transfer functions for different flame geometries. Proc. Combust. Inst. 32 (1), 13911398.CrossRefGoogle Scholar
Emmert, T., Bomberg, S. & Polifke, W. 2015 Intrinsic thermoacoustic instability of premixed flames. Combust. Flame 162 (1), 7585.CrossRefGoogle Scholar
Faure-Beaulieu, A., Indlekofer, T., Dawson, J.R. & Noiray, N. 2021 Imperfect symmetry of real annular combustors: beating thermoacoustic modes and heteroclinic orbits. J. Fluid Mech. 925, R1.CrossRefGoogle Scholar
Ghani, A. & Polifke, W. 2021 An exceptional point switches stability of a thermoacoustic experiment. J. Fluid Mech. 920, R3.CrossRefGoogle Scholar
Ghirardo, G. & Juniper, M.P. 2013 Azimuthal instabilities in annular combustors: standing and spinning modes. Proc. R. Soc. Lond. A 469 (2157), 20130232.Google Scholar
Gray, R.M. 2006 Toeplitz and circulant matrices: a review. Found. Trends Commun. Inform. Theory 2 (3), 155239.CrossRefGoogle Scholar
Heiss, W.D. 2012 The physics of exceptional points. J. Phys. A: Math. Theor. 45 (44), 444016.CrossRefGoogle Scholar
Hoeijmakers, M., Kornilov, V., Artega, I.Lopez, de Goey, P. & Nijmeijer, H. 2014 Intrinsic instability of flame–acoustic coupling. Combust. Flame 161 (11), 28602867.CrossRefGoogle Scholar
Huang, Q., Tian, F.-B., Young, J. & Lai, J.C.S. 2021 Transition to chaos in a two-sided collapsible channel flow. J. Fluid Mech. 926, A15.CrossRefGoogle Scholar
Huang, Y., Shen, Y., Min, C., Fan, S. & Veronis, G. 2017 Unidirectional reflectionless light propagation at exceptional points. Nanophotonics 6 (5), 977996.CrossRefGoogle Scholar
Humbert, S.C., Orchini, A., Paschereit, C.O. & Noiray, N. 2022 Symmetry breaking in an experimental annular combustor model with deterministic electroacoustic feedback and stochastic forcing. J. Engng Gas Turbines Power 145 (3), 031021.CrossRefGoogle Scholar
Indlekofer, T., Faure-Beaulieu, A., Dawson, J.R. & Noiray, N. 2022 Spontaneous and explicit symmetry breaking of thermoacoustic eigenmodes in imperfect annular geometries. J. Fluid Mech. 944, A15.CrossRefGoogle Scholar
Jones, C.A. 1988 Multiple eigenvalues and mode classification in plane Poiseuille flow. Q. J. Mech. Appl. Maths 41 (3), 363382.CrossRefGoogle Scholar
Kato, T. 1980 Perturbation Theory for Linear Operators. Springer Berlin/Heidelberg.Google Scholar
Kokanović, S., Guidati, G., Torchalla, S. & Schuermans, B. 2006 Active combustion control system for reduction of NOx and pulsation levels in gas turbines. In ASME Turbo Expo, vol. 1, pp. 673682.Google Scholar
Krüger, U., Hüren, J., Hoffmann, S., Krebs, W., Flohr, P. & Bohn, D. 2000 Prediction and measurement of thermoacoustic improvements in gas turbines with annular combustion systems. J. Engng Gas Turbines Power 123 (3), 557566.CrossRefGoogle Scholar
Lieuwen, T.C. 2012 Unsteady Combustor Physics. Cambridge University Press.CrossRefGoogle Scholar
Magri, L., Schmid, P.J. & Moeck, J.P. 2023 Linear flow analysis inspired by mathematical methods from quantum mechanics. Annu. Rev. Fluid Mech. 55 (2023), 541574.CrossRefGoogle Scholar
Meng, C. & Guo, Z. 2023 Vorticity wave interaction, Krein collision, and exceptional points in shear flow instabilities. Phys. Rev. E 108 (6), 065109.CrossRefGoogle ScholarPubMed
Mensah, G.A., Campa, G. & Moeck, J.P. 2016 Efficient computation of thermoacoustic modes in industrial annular combustion chambers based on Bloch-wave. J. Engng Gas Turbines Power 138 (8), 081502.CrossRefGoogle Scholar
Mensah, G.A., Magri, L., Orchini, A. & Moeck, J.P. 2018 a Effects of asymmetry on thermoacoustic modes in annular combustors: a higher-order perturbation study. J. Engng Gas Turbines Power 141 (4), 041030.CrossRefGoogle Scholar
Mensah, G.A., Magri, L., Silva, C.F., Buschmann, P.E. & Moeck, J.P. 2018 b Exceptional points in the thermoacoustic spectrum. J. Sound Vib. 433, 124128.CrossRefGoogle Scholar
Moeck, J.P., Paul, M. & Paschereit, C.O. 2010 Thermoacoustic instabilities in an Annular Rijke Tube. ASME Turbo Expo, vol. 2, pp. 12191232.Google Scholar
Negi, P.S., Hanifi, A. & Henningson, D.S. 2020 On the linear global stability analysis of rigid-body motion fluid–structure-interaction problems. J. Fluid Mech. 903, A35.CrossRefGoogle Scholar
Noiray, N., Bothien, M.R. & Schuermans, B. 2011 Investigation of azimuthal staging concepts in annular gas turbines. Combust. Theory Model. 15 (5), 585606.CrossRefGoogle Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2007 Passive control of combustion instabilities involving premixed flames anchored on perforated plates. Proc. Combust. Inst. 31 (1), 12831290.CrossRefGoogle Scholar
Nygard, H.T., Mazur, M., Dawson, J.R. & Worth, N.A. 2019 Flame dynamics of azimuthal forced spinning and standing modes in an annular combustor. Proc. Combust. Inst. 37 (4), 51135120.CrossRefGoogle Scholar
Orchini, A., Magri, L., Silva, C., Mensah, G.A. & Moeck, J.P. 2020 Degenerate perturbation theory in thermoacoustics: high-order sensitivities and exceptional points. J. Fluid Mech. 903, A37.CrossRefGoogle Scholar
Schaefer, F., Guo, S. & Polifke, W. 2021 The impact of exceptional points on the reliability of thermoacoustic stability analysis. J. Engng Gas Turbines Power 143 (2), 021010.CrossRefGoogle Scholar
Seyranian, A.P., Kirillov, O.N. & Mailybaev, A.A. 2005 Coupling of eigenvalues of complex matrices at diabolic and exceptional points. J. Phys. A: Math. Gen. 38 (8), 17231740.CrossRefGoogle Scholar
Sogaro, F.M., Schmid, P.J. & Morgans, A.S. 2019 Thermoacoustic interplay between intrinsic thermoacoustic and acoustic modes: non-normality and high sensitivities. J. Fluid Mech. 878, 190220.CrossRefGoogle Scholar
Staffelbach, G., Gicquel, L.Y.M., Boudier, G. & Poinsot, T. 2009 Large eddy simulation of self-excited azimuthal modes in annular combustors. Proc. Combust. Inst. 32 (2), 29092916.CrossRefGoogle Scholar
Wiersig, J. 2020 Review of exceptional point-based sensors. Photonics Res. 8 (9), 14571467.CrossRefGoogle Scholar
Worth, N.A. & Dawson, J.R. 2013 Modal dynamics of self-excited azimuthal instabilities in an annular combustion chamber. Combust. Flame 160 (11), 24762489.CrossRefGoogle Scholar