Published online by Cambridge University Press: 14 February 2011
A numerical investigation was conducted into the different flow states, and bifurcations leading to changes of state, found in open cylinders of medium to moderate depth driven by a constant rotation of the vessel base. A combination of linear stability analysis, for cylinders of numerous height-to-radius aspect ratios (H/R), and nonlinear stability analysis and three-dimensional simulations for a cylinder of aspect ratio 1.5, has been employed. Attention is focused on the breaking of SO(2) symmetry. A comprehensive map of transition Reynolds numbers as a function of aspect ratio is presented by combining a detailed stability analysis with the limited existing data from the literature. For all aspect ratios considered, the primary instabilities are identified as symmetry-breaking Hopf bifurcations, occurring at Reynolds numbers well below those of the previously reported axisymmetric Hopf transitions. It is revealed that instability modes with azimuthal wavenumbers m = 1, 3 and 4 are the most unstable in the range 1.0 < H/R < 4, and that numerous double Hopf bifurcation points exist. Critical Reynolds numbers generally increase with cylinder aspect ratio, though a decrease in stability occurs between aspect ratios 1.5 and 2.0, where a local minimum in critical Reynolds number occurs. For H/R = 1.5, a detailed characterisation of instability modes is given. It is hypothesized that the primary instability leading to transition from steady axisymmetric flow to unsteady three-dimensional flow is related to deformation of shear layers that are present in the flow, in particular at the interfacial region between the vortex breakdown bubble and the primary recirculation.