Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T10:07:31.806Z Has data issue: false hasContentIssue false

The surface topography of a magnetic fluid: a quantitative comparison between experiment and numerical simulation

Published online by Cambridge University Press:  04 January 2007

CHRISTIAN GOLLWITZER
Affiliation:
Experimentalphysik V, Universität Bayreuth, D-95440 Bayreuth, Germany
GUNAR MATTHIES
Affiliation:
Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
REINHARD RICHTER
Affiliation:
Experimentalphysik V, Universität Bayreuth, D-95440 Bayreuth, Germany
INGO REHBERG
Affiliation:
Experimentalphysik V, Universität Bayreuth, D-95440 Bayreuth, Germany
LUTZ TOBISKA
Affiliation:
Institut für Analysis und Numerik, Otto-von-Guericke-Universität Magdeburg, PF 4120, D-39106 Magdeburg, Germany

Abstract

The normal field instability in magnetic liquids is investigated experimentally by means of a radioscopic technique which allows a precise measurement of the surface topography. The dependence of the topography on the magnetic field is compared to results obtained by numerical simulations via the finite-element method. Quantitative agreement has been found for the critical field of the instability, the scaling of the pattern amplitude and the detailed shape of the magnetic spikes. The fundamental Fourier mode approximates the shape to within 10% accuracy for a range of up to 40% of the bifurcation parameter of this subcritical bifurcation. The measured control parameter dependence of the wavenumber differs qualitatively from analytical predictions obtained by minimization of the free energy.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abou, B., Wesfreid, J.-E. & Roux, S. 2001 The normal field instability in ferrofluids: hexagon-square transition mechanism and wavenumber selection. J. Fluid Mech. 416, 217237.CrossRefGoogle Scholar
Bacri, J.-C. & Salin, D. 1984 First-order transition in the instability of a magnetic fluid interface. J. Phys. Lett. (Paris) 45, L559L564.CrossRefGoogle Scholar
Boudouvis, A. G., Puchalla, J. L., Scriven, L. E. & Rosensweig, R. E. 1987 Normal field instability and patterns in pools of ferrofluid. J. Magn. Magn. Mater. 65, 307310.CrossRefGoogle Scholar
Browaeys, J., Bacri, J.-C., Flament, C., Neveu, S. & Perzynski, R. 1999 Surface waves in ferrofluids under vertical magnetic field. Eur. Phys. J. B 9, 335341.CrossRefGoogle Scholar
Cowley, M. D. & Rosensweig, R. E. 1967 The interfacial stability of a ferromagnetic fluid. J. Fluid Mech. 30, 671688.CrossRefGoogle Scholar
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 8511112.CrossRefGoogle Scholar
Fortune, S. J. 1995 Voronoi diagrams and Delaunay triangulations. In Computing in Euclidean Geometry (ed. Du, D.-Z. & Hwang, F.), Lecture Notes Series on Computing, vol. 1. World Scientific.Google Scholar
Friedrichs, R. 2002 Low symmetry patterns on magnetic fluids. Phys. Rev. E 66, 066215-1-7.CrossRefGoogle ScholarPubMed
Friedrichs, R. & Engel, A. 2001 Pattern and wave number selection in magnetic fluids. Phys. Rev. E 64, 021406-1-10.CrossRefGoogle ScholarPubMed
Gailitis, A. 1969 A form of surface instability of a ferromagnetic fluid. Magnetohydrodynamics 5, 4445.Google Scholar
Gailitis, A. 1977 Formation of the hexagonal pattern on the surface of a ferromagnetic fluid in an applied magnetic field. J. Fluid Mech. 82, 401413.CrossRefGoogle Scholar
Harkins, W. D. & Jordan, H. F. 1930 A method for the determination of surface and interfacial tension from the maximum pull on a ring. J. Am. Chem. Soc. 52, 17471750.CrossRefGoogle Scholar
John, V. & Matthies, G. 2004 MooNMD – a program package based on mapped finite element methods. Comput. Vis. Sci. 6, 163170.CrossRefGoogle Scholar
Kuznetsov, E. A. & Spektor, M. D. 1976 Existence of a hexagonal relief on the surface of a dielectric fluid in an external electrical field. Sov. Phys., J. Exp. Theor. Phys. 44, 136.Google Scholar
Lange, A. 2001 Scaling behaviour of the maximal growth rate in the Rosensweig instability. Europhys. Lett. 55, 327.CrossRefGoogle Scholar
Lange, A., Reimann, B. & Richter, R. 2000 Wave number of maximal growth in viscous magnetic fluids of arbitrary depth. Phys. Rev. E 61, 55285539.CrossRefGoogle ScholarPubMed
Lange, A., Reimann, B. & Richter, R. 2001 Wave number of maximal growth in viscous ferrofluids. Magnetohydrodynamics 37, 261.Google Scholar
Lange, C. G. & Newell, A. C. 1971 The post buckling problem for thin elastic shells. SIAM J. Appl. Maths, 21, 605629.CrossRefGoogle Scholar
Lavrova, O., Matthies, G., Mitkova, T., Polevikov, V. & Tobiska, L. 2003 Finite Element Methods for Coupled Problems in Ferrohydrodynamics. Lecture Notes in Computer Science and Engineering, vol. 35, pp. 160183. Springer.Google Scholar
Mahr, T. & Rehberg, I. 1998a Nonlinear dynamics of a single ferrofluid-peak in an oscillating magnetic field. Physica D 111, 335346.CrossRefGoogle Scholar
Mahr, T. & Rehberg, I. 1998b Parametrically excited surface waves in magnetic fluids: observation of domain structures. Phys. Rev. Lett. 81, 89.CrossRefGoogle Scholar
Mahr, T., Groisman, A. & Rehberg, I. 1996 Non-monotonic dispersion of surface waves in magnetic fluids. J. Magn. Magn. Mater. 159, L45L50.CrossRefGoogle Scholar
Matthies, G. & Tobiska, L. 2005 Numerical simulation of normal-field instability in the static and dynamic case. J. Magn. Magn. Mater. 289, 346349.CrossRefGoogle Scholar
Megalios, E., Kapsalis, N., Paschalidis, J., Papathanasiou, A. & Boudouvis, A. 2005 A simple optical device for measureing free surface deformations of nontransparent liquids. J. Colloid Interface Sci. 288, 505512.CrossRefGoogle Scholar
Peinke, J., Parisi, J., Rössler, O. E. & Stoop, R. 1992 Encounter with Chaos: Self-Organized Hierarchical Complexity in Semiconductor Experiments. Springer.CrossRefGoogle Scholar
Perlin, M., Lin, H. & Ting, C.-L. 1993 On parasitic capillary waves generated by steep gravity waves: an experimental investigation with spatial and temporal measurements. J. Fluid Mech. 255, 597.CrossRefGoogle Scholar
Prigogine, I. 1988 Vom Sein zum Werden. Zeit und Komplexität in den Naturwissenschaften, 1st edn. Piper.Google Scholar
Rehberg, I., Bodenschatz, E., Winkler, B. & Busse, F. H. 1987 Forced phase diffusion in a convection experiment. Phys. Rev. Lett. 59, 282284.CrossRefGoogle Scholar
Reimann, B., Richter, R., Rehberg, I. & Lange, A. 2003 Oscillatory decay at the Rosensweig instability: experiment and theory. Phys. Rev. E 68, 036220.CrossRefGoogle ScholarPubMed
Richter, R. & Barashenkov, I. 2005 Two-dimensional solitons on the surface of magnetic liquids. Phys. Rev. Lett. 94, 184503.CrossRefGoogle Scholar
Richter, R. & Bläsing, J. 2001 Measuring surface deformations in magnetic fluid by radioscopy. Rev. Sci. Instrum. 72, 17291733.CrossRefGoogle Scholar
Rosensweig, R. E. 1985 Ferrohydrodynamics. Cambridge University Press.Google Scholar
Sauer, K. D. & Allebach, J. P. 1987 Iterative reconstruction of multidimensional signals from nonuniformly spaced samples. IEEE Trans. CAS 34, 14971506.CrossRefGoogle Scholar
Shipman, P. D. & Newell, A. C. 2004 Phylotactic patterns on plants. Phys. Rev. Lett. 92, 168102.CrossRefGoogle ScholarPubMed
Taylor, G. I. 1933 The buckling load for a rectangular plate with four clamped edges. Z. Angew. Math. Mech. 13, 147152.CrossRefGoogle Scholar
Taylor, G. I. & McEwan, A. D. 1965 The stability of a horizontal fluid interface in a vertical electric field. J. Fluid Mech. 22, 115.CrossRefGoogle Scholar
Wernet, A., Wagner, C., Papathanassiou, D., Müller, H. W. & Knorr, K. 2001 Amplitude measurements of Faraday waves. Phys. Rev. E 63, 036305.CrossRefGoogle ScholarPubMed