Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T18:42:06.139Z Has data issue: false hasContentIssue false

Supersonic laminar boundary layer near the plane of symmetry of a cone at incidence

Published online by Cambridge University Press:  29 March 2006

Bernard Roux
Affiliation:
Institut de Mécanique des Fluides de xl'Université d'Aix-Marseille, Marseille, France

Abstract

Supersonic laminar boundary-layer equations near the plane of symmetry of a cone at incidence are treated by the similarity method. Numerical integration of differential equations governing such a flow is performed, taking into consideration the temperature dependence of the Prandtl number Pr and viscosity μ throughout the boundary layer. On the leeward side, a detailed consideration of the solutions shows the existence of two solutions up to a critical incidence beyond which it appears that no solution may be found. Calculations carried out for a set of values of the external flow Mach number show up a significant effect of this parameter on the behaviour of the boundary layer.

Type
Research Article
Copyright
© 1972 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boericke, R. R. 1970 The laminar boundary layer on a cone a t incidence in supersonic flow. A.I.A.A. Paper, no. 70-78 (see also A.I.A.A. 8th Aero. Soc. Meeting).Google Scholar
Cooke, J. C. 1966 Supersonic laminar boundary layer on cones. R.A.E. Tech. Rep. 66347.Google Scholar
Dewey, C. F. & Gross, J. F. 1967 Exact similar solutions of the laminar boundary-layer equations. Advances in Heat Transfer, 4, 317446.Google Scholar
Guffroy, D., Roux, B., Marcillat, J., Brun, R. & Valensi, J. 1968 Etude théorique et expérimentale de la couche limite autour d'un cbne circulaire placé en incidence dans un courant hypersonique, AGARD Current Paper, no. 30.Google Scholar
Hartree, D. R. 1937 On an equation occurring in Falkner and Skan's approximate treatment of the equation of the boundary layer. Proc. Camb. Phil. Soc. 33, 223.Google Scholar
Hayes, W. D. 1951 The three-dimensional boundary layer. NAVORD Rep. 1313.Google Scholar
Jones, D. J. 1969 Tables of inviscid supersonic flow about circular cones at incidence, γ = 1.4. AGARDograph, 137.Google Scholar
Moore, F. H. 1953 Laminar boundary layer on cone supersonic flow a t large angle of attack. N.A.C.A. Tech. Rep. 1132.Google Scholar
Reshotko, E. 1957 Laminar boundary layer with heat transfer on cone at angle of attack in a supersonic stream. N.A.C.A. Tech. Note, 4152.Google Scholar
Roux, B. 1971 Etude théorique de l'effet d'incidence sur la couche limite laminaire autour d'un cône circulaire placé dans un écoulement supersonique. J. Mécanique, 10.Google Scholar
Roux, B. & Rey, J. F. 1970 Sur le calcul de la couche limito laminaire dans Is plan de symétrie d'un cône de révolution en incidence. C.R.A.S. A 270, 616619.Google Scholar
Trella, M. & Libby, P. A. 1965 Similar solutions for the hypersonic laminar boundary layer near a plane of symmetry. A.I.A.A. J. 3, 7583.Google Scholar
Vvedenskaya, N. D. 1966 Calculation of the boundary layer arising in flow about a cone under an angle of attack, USSR Comp. Math & Math Phys. 6, 149161.Google Scholar
Whittaker, E. T. & Watson, G. N. 1943 Modern Analysis. Macmillan.