Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-19T12:29:30.329Z Has data issue: false hasContentIssue false

Super-Alfvénic supersonic flow over a cone in aligned fields

Published online by Cambridge University Press:  29 March 2006

Lee A. Bertram
Affiliation:
Department of Engineering Mechanics, Iowa State University
Y. M. Lynn
Affiliation:
Division of Mathematics, University of Maryland, Baltimore County

Abstract

Super-Alfvénic supersonic aligned magnetogasdynamic flow over a cone of finite semi-apex angle, with an attached fast shock wave, is solved numerically. We obtain ‘almond curves’ in the plane of magnetic induction vector variation, analogous to Busemann's ‘apple curves’ for supersonic cone flows, to describe the flow field near the cone. Total surface pressure coefficients, current and vorticity distributions are presented. A closed-form solution of the flow is obtained when a switch-on shock occurs.

Type
Research Article
Copyright
© 1972 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aehiezer, A. J., Lwbarse & icar;, G. I. & Polovin, R. V. 1958 Zh. éksp. teor. Fiz. 35, 731. (Trans. in Soviet Phys. JETP, 8, 507.)
Bausset, M. 1963 C. r. hebd. Se’anc. Acad. Sci., Paris 257, 372.
Bazer, J. & Ericson, W. B. 1962 Proc. Symp. on Electromagnetics & Fluid Dyn. Of Gaseous Plasma, Microwave Res. Inst. Symp. Series, vol. xi, p. 387. Brooklyn: Polytech. Press.
Bazer, J. & Fleishman, O. 1959 Phys. Fluids 2, 366.
Bertram, L. A. 1969 Ph.D. thesis, Illinois Institute of Technology.
Busemann, A. 1929 Z. angew. Math. Mech. 9, 496.
Cabannes, H. 1963 C. r. hebd. Séan.c. Acad. Sci., Paris 257, 375.
Chu, C. K. & Lynn, Y. M. 1963 A.I.A.A. J. 1, 1062.
Ericson, W. B. & Bazer, J. 1960 Phys. Fluids 3, 631.
Friedrichs, K. O. 1954 Los Alamos Rep. LAMS-2105.
Friedrichs, K. O. & Kranzer, H. 1958 New York Univ. Courant Inst. Math. Sci. Rep. NYO-6486-VIII.
Kaliehman, L. E. 1967 Elements of Magnetogasdynamics, p. 142. W. B. Saunders.
Karim, A. I. A. 1966 Communs. Ass. comput. Mach. 9, 113.
Kogan, M. N. 1959 Prikh. Mat. Mech. Akad. Nauk SSSR, 23, 70. (Trans. in Appl. Math. Mech. 23, 92.)
Kogan, M. N. 1962 Problems of Magnetohydrodynamics and Plasma Dynamics, p. 54. Academy of Science Latvian SSR. (Trans.: see Kalikhman 1967.)
Lüst, R. 1955 Z. Naturforschung, 10 (a), 125.
Lynn, Y. M. 1962 Phys. Fluids, 5, 626.
Lynn, Y. M. 1966 Phys. Fluids 9, 314.
Lynn, Y. M. 1971 J. Plasma Phys. 6, 283.
Mccune, J. E. & Resler, E. L. 1960 J. Aerospace Sci. 27, 493.
Mimura, Y. 1963 A.I.A.A. J. 1, 272.
Pack, D. C. & Swan, G. W. 1966 J. Fluid Mech. 25, 165.
Resler, E. L. & Mccune, J. E. 1959 In The Magnetogasdynamics of Conducting Fluids (ed. D Bershader), p. 120. Stanford University Press.
Sakurai, T. 1962 Proc. 3rd Int. Symp. on. Rockets and Astronautics (ed. S. Saito et ul.), p. 189. Tokyo: Yokendo Bunkyo-ku.
Sears, W. R. 1960 Rev. Mod. Phys. 32, 701.
Solomon, G. E. 1954 N.A.C.A. 3213.
Stewartson, K. 1960 Rev. Mod. Phys. 32, 855.
Taniuti, T. 1958 Prog. Theor. Phys., Kyoto 19, 749.
Taylor, G. I. & Maccoll, J. W. 1933 Proc. Roy. Soc. A 139, 278.
Urashima, S. & Morioka, S. 1966 J. Phys. Soc. Japan 21, 1431.
Weitzner, H. 1961 Phys. Fluids 4, 1238.