Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T13:10:20.414Z Has data issue: false hasContentIssue false

Strong MHD helical turbulence and the nonlinear dynamo effect

Published online by Cambridge University Press:  11 April 2006

A. Pouquet
Affiliation:
Centre National de la Recherche Scientifique, Observatoire de Nice, France
U. Frisch
Affiliation:
Centre National de la Recherche Scientifique, Observatoire de Nice, France
J. Léorat
Affiliation:
Université Paris VII, Observatoire de Meudon, France

Abstract

To understand the turbulent generation of large-scale magnetic fields and to advance beyond purely kinematic approaches to the dynamo effect like that introduced by Steenbeck, Krause & Radler (1966)’ a new nonlinear theory is developed for three-dimensional, homogeneous, isotropic, incompressible MHD turbulence with helicity, i.e. not statistically invariant under plane reflexions. For this, techniques introduced for ordinary turbulence in recent years by Kraichnan (1971 a)’ Orszag (1970, 1976) and others are generalized to MHD; in particular we make use of the eddy-damped quasi-normal Markovian approximation. The resulting closed equations for the evolution of the kinetic and magnetic energy and helicity spectra are studied both theoretically and numerically in situations with high Reynolds number and unit magnetic Prandtl number.

Interactions between widely separated scales are much more important than for non-magnetic turbulence. Large-scale magnetic energy brings to equipartition small-scale kinetic and magnetic excitation (energy or helicity) by the ‘Alfvén effect’; the small-scale ‘residual’ helicity, which is the difference between a purely kinetic and a purely magnetic helical term, induces growth of large-scale magnetic energy and helicity by the ‘helicity effect’. In the absence of helicity an inertial range occurs with a cascade of energy to small scales; to lowest order it is a −3/2 power law with equipartition of kinetic and magnetic energy spectra as in Kraichnan (1965) but there are −2 corrections (and possibly higher ones) leading to a slight excess of magnetic energy. When kinetic energy is continuously injected, an initial seed of magnetic field will grow to approximate equipartition, at least in the small scales. If in addition kinetic helicity is injected, an inverse cascade of magnetic helicity is obtained leading to the appearance of magnetic energy and helicity in ever-increasing scales (in fact, limited by the size of the system). This inverse cascade, predicted by Frisch et al. (1975), results from a competition between the helicity and Alféh effects and yields an inertial range with approximately — 1 and — 2 power laws for magnetic energy and helicity. When kinetic helicity is injected at the scale linj and the rate $\tilde{\epsilon}^V$ (per unit mass), the time of build-up of magnetic energy with scale L [Gt ] linj is $t \approx L(|\tilde{\epsilon}^V|l^2_{\rm inj})^{-1/3}.$

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, J. C. & Lesieur, M. 1976 Evolution of high Reynolds number helical turbulence. Submitted to J. Fluid Mech.Google Scholar
Bardos, C., Penel, P., Frisch, U. & Sulem, P. L. 1976 Modified dissipativity for a nonlinear evolution equation arising in turbulence. Arch. Rat. Mech. Anal. (to appear).Google Scholar
Batchelor, G. K. 1950 Proc. Roy. Soc. A 201, 405.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Brissaud, A., Frisch, U., Léorat, J., Lesieur, M. & Mazure, A. 1973 Phys. Fluids, 16, 1366.
Frisch, U., Lesieur, M. & Brissaud, A. 1974 J. Fluid Mech. 65, 145.
Frisch, U., Pouquet, A., Léorat, J. & Mazure, A. 1975 J. Fluid Mech. 68, 769.
Herring, J. R., Orszag, S. A., Kraicenan, R. H. & Fox, D. G. 1974 J. Fluid Mech. 66, 417.
Kraichnan, R. H. 1958 Phys. Rev. 109, 1407.
Kraichnan, R. H. 1959 J. Fluid Mech. 5, 497.
Kraicenan, R. H. 1965 Phys. Fluids, 8, 1385.
Kraicenan, R. H. 1967 Phys. Fluids, 10, 1417.
Kraichnan, R. H. 1971a J. Fluid Mech. 47, 513.
Kraichnan, R. H. 1971b J. Fluid Mech. 47, 525.
Kraichnan, R. H. 1972 J. Fluid Mech. 56, 287.
Kraichnan, R. H. 1976 J. Fluid Mech. 75, 657.
Kraichnan, R. H. & Nagarajan, S. 1967 Phys. Fluids, 10, 859.
Leith, C. E. 1971 J. Atmos. Sci. 28, 145.
Leite, C. E. & Kraicenan, R. H. 1972 J. Atmos. Sci. 29, 1041.
Léorat, J. 1975 These d'état, Université Paris VII.
Lesieur, M. 1973 ThAse d'état, Université de Nice.
Lesieur, M. & Sulem, P. L. 1976 Les équations spectrales en turbulence homogéjne et isotrope. Quelques résultats théoriques et numériques. Journées Mathématiques sur la Turbulence, Orsay (ed. R. Temam). Springer.
Leslie, D. C. 1973 Developments in the Theory of Turbulence. Oxford: Clarendon Press.
Lorenz, E. 1969 Tellus, 21, 289.
Malkus, W. V. R. & Proctor, M. R. E. 1975 J. Fluid Mech. 67, 417.
Moffatt, H. K. 1970a J. Fluid Mech. 41, 435.
Moffatt, H. K. 1970b J. Fluid Mech. 44, 705.
Moffatt, H. K. 1972. J. Fluid Mech. 53, 385.
Moffatt, H. K. 1973 J. Fluid Mech. 57, 625.
Moffatt, H. K. 1974 J. Fluid Mech. 65, 1.
Nagarajan, S. 1971 I.A.U. Trans. 43, 487.
Orszna, S. A. 1970 J. Fluid Mech. 41, 363.
Orszag, S. A. 1976 Lectures on the statistical theory of turbulence. Les Houches Lectures, 1973 (ed. R. Balian). North Holland.
Orszag, S. A. & Kruseal, M. D. 1968 Phys. Fluids, 11, 43.
Orszag, S. A. & Patterson, G. S. 1972 Lecture Notes in Physics, vol. 12, p. 127. Springer.
Parker, E. N. 1955 Astrophys. J. 122, 293.
Pouquet, A., Lesieur, M., André, J. C. & Basdevant, C. 1975 J. Fluid Mech. 72, 305.
Pouquet, A. & Patterson, G. S. 1976 Direct Numerical Simulation of helical MHD Turbulence. Submitted to J. Fluid Mech.Google Scholar
Roberts, P. H. 1971 In Mathematical Problems in the Geophysical Sciences (ed. W. H. Reid), p. 129. Providence: Am. Math. Soc.
Roberts, P. H. & Stix, M. 1971 N.G.A.R. Tech. Note, no. IA-60.
Steenbece, M., Krause, F. & Radler, K. H. 1966 Z. Naturforsch. 21a, 364.
Sulem, P. L., Lesieur, M. & Frisch, U. 1975 Ann. Geophys. (Paris) 31, 30.
Vainsetein, S. I. 1972 Sov. Phys., J. Exp. Thew. Phys. 38, 270.
Vainsetein, S. I. & Zeldovice, Y. B. 1972 Sov. Phys. Uspekhi, 15, 159.