Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T03:39:29.421Z Has data issue: false hasContentIssue false

Stress-driven spin-down of a viscous fluid within a spherical shell

Published online by Cambridge University Press:  13 October 2020

D. Gagnier*
Affiliation:
IRAP, Université de Toulouse, CNRS, UPS, CNES, 14, avenue Édouard Belin, F-31400Toulouse, France Department of Astronomy, University of Geneva, Chemin des Maillettes 51, 1290Versoix, Switzerland
M. Rieutord
Affiliation:
IRAP, Université de Toulouse, CNRS, UPS, CNES, 14, avenue Édouard Belin, F-31400Toulouse, France
*
Email address for correspondence: [email protected]

Abstract

We investigate the linear properties of the steady and axisymmetric stress-driven spin-down flow of a viscous fluid inside a spherical shell, both within the incompressible and anelastic approximations, and in the asymptotic limit of small viscosities. From boundary layer analysis, we derive an analytical geostrophic solution for the three-dimensional incompressible steady flow, inside and outside the cylinder $\mathcal {C}$ that is tangent to the inner shell. The Stewartson layer that lies on $\mathcal {C}$ is composed of two nested shear layers of thickness $O(E^{2/7})$ and $O(E^{1/3})$ where E is the Ekman number. We derive the lowest-order solution for the $E^{2/7}$-layer. A simple analysis of the $E^{1/3}$-layer lying along the tangent cylinder, reveals it to be the site of an upwelling flow of amplitude $O(E^{1/3})$. Despite its narrowness, this shear layer concentrates most of the global meridional kinetic energy of the spin-down flow. Furthermore, a stable stratification does not perturb the spin-down flow provided the Prandtl number is small enough. If this is not the case, the Stewartson layer disappears and meridional circulation is confined within the thermal layers. The scalings for the amplitude of the anelastic secondary flow have been found to be the same as for the incompressible flow in all three regions, at the lowest order. However, because the velocity no longer conforms the Taylor–Proudman theorem, its shape differs outside the tangent cylinder $\mathcal {C}$, that is, where differential rotation takes place. Finally, we find the settling of the steady state to be reached on a viscous time for the weakly, strongly and thermally unstratified incompressible flows. Large density variations relevant to astro- and geophysical systems, tend to slightly shorten the transient.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barcilon, V. 1968 Stewartson layers in transient rotating fluid flows. J. Fluid Mech. 33, 815825.Google Scholar
Barcilon, V. & Pedlosky, J. 1967 A unified linear theory of homogeneous and stratified rotating fluids. J. Fluid Mech. 29, 609621.Google Scholar
Brandenburg, A., Jennings, R., Nordlund, Å., Rieutord, M., Stein, R. F. & Tuominen, I. 1996 Magnetic structures in a dynamo simulation. J. Fluid Mech. 306, 325357.CrossRefGoogle Scholar
Chaboyer, B. & Zahn, J.-P. 1992 Effect of horizontal turbulent diffusion on transport by meridional circulation. Astron. Astrophys. 253, 173177.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon Press.Google Scholar
Dintrans, B. & Rieutord, M. 2001 A comparison of the anelastic and subseismic approximations for low-frequency gravity modes in stars. Mon. Not. R. Astron. Soc. 324, 635642.Google Scholar
Dormy, E., Cardin, P. & Jault, D. 1998 MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field. Earth Planet. Sci. Lett. 160, 1530.Google Scholar
Espinosa Lara, F. & Rieutord, M. 2011 Gravity darkening in rotating stars. Astron. Astrophys. 533, A43.CrossRefGoogle Scholar
Espinosa Lara, F. & Rieutord, M. 2013 Self-consistent 2D models of fast rotating early-type stars. Astron. Astrophys. 552, A35.CrossRefGoogle Scholar
Friedlander, S. 1976 Quasi-steady flow of a rotating stratified fluid in a sphere. J. Fluid Mech. 76, 209228.CrossRefGoogle Scholar
Gagnier, D. & Garaud, P. 2018 Turbulent transport by diffusive stratified shear flows: from local to global models. II. Limitations of local models. Astrophys. J. 862, 36. arXiv:1803.10455.CrossRefGoogle Scholar
Gagnier, D., Rieutord, M., Charbonnel, C., Putigny, B. & Espinosa Lara, F. 2019 a Critical angular velocity and anisotropic mass loss of rotating stars with radiation-driven winds. Astron. Astrophys. 625, A88.Google Scholar
Gagnier, D., Rieutord, M., Charbonnel, C., Putigny, B. & Espinosa Lara, F. 2019 b Evolution of rotation in rapidly rotating early-type stars during the main sequence with 2D models. Astron. Astrophys. 625, A89.CrossRefGoogle Scholar
Garaud, P. 2002 On rotationally driven meridional flows in stars. Mon. Not. R. Astron. Soc. 335, 707711.CrossRefGoogle Scholar
Garaud, P. 2020 Double-diffusive processes in stellar astrophysics. In Multi-Dimensional Processes in Stellar Physics (ed. Rieutord, M., Baraffe, I. & Lebreton, Y.), p. 13. EDP Sciences.Google Scholar
Garaud, P., Gagnier, D. & Verhoeven, J. 2017 Turbulent transport by diffusive stratified shear flows: from local to global models. I. Numerical simulations of a stratified plane Couette flow. Astrophys. J. 837, 133. arXiv:1610.04320.CrossRefGoogle Scholar
Gastine, T. & Wicht, J. 2012 Effects of compressibility on driving zonal flow in gas giants. Icarus 219 (1), 428442.Google Scholar
Georgy, C., Meynet, G. & Maeder, A. 2011 Effects of anisotropic winds on massive star evolution. Astron. Astrophys. 527, A52. arXiv:1011.6581.Google Scholar
Goldstein, S. 1938, 1965 Modern Developments in Fluid Dynamics. Clarendon Press, Oxford, Dover.Google Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Hollerbach, R. 1994 Magnetohydrodynamic Ekman and Stewartson layers in a rotating spherical shell. Proc. R. Soc. Lond. A 444, 333.Google Scholar
Hollerbach, R. 1997 The influence of an axial field on magnetohydrodynamic Ekman and Stewartson layers, in the presence of a finitely conducting inner core. Acta Astron. Geophys. Univ. Comenianae 19, 263275.Google Scholar
Hypolite, D., Mathis, S. & Rieutord, M. 2018 The 2D dynamics of radiative zones of low-mass stars. Astron. Astrophys. 610, A35. arXiv:1711.08544.Google Scholar
Hypolite, D. & Rieutord, M. 2014 Dynamics of the envelope of a rapidly rotating star or giant planet in gravitational contraction. Astron. Astrophys. 572, A15.CrossRefGoogle Scholar
Jones, C. A., Kuzanyan, K. M. & Mitchell, R. H. 2009 Linear theory of compressible convection in rapidly rotating spherical shells, using the anelastic approximation. J. Fluid Mech. 634, 291.CrossRefGoogle Scholar
Käpylä, P. J., Mantere, M. J. & Brandenburg, A. 2012 Cyclic magnetic activity due to turbulent convection in spherical wedge geometry. Astrophys. J. Lett. 755 (1), L22.Google Scholar
Kleeorin, N., Rogachevskii, I., Ruzmaikin, A., Soward, A. M. & Starchenko, S. 1997 Axisymmetric flow between differentially rotating spheres in a dipole magnetic field. J. Fluid Mech. 344 (1), 213244.CrossRefGoogle Scholar
Kudritzki, R. P., Pauldrach, A. & Puls, J. 1987 Radiation driven winds of hot luminous stars. II – wind models for O-stars in the magellanic clouds. Astron. Astrophys. 173, 293298.Google Scholar
Kulenthirarajah, L. & Garaud, P. 2018 Turbulent transport by diffusive stratified shear flows: from local to global models. III. A closure model. Astrophys. J. 864, 107. arXiv:1803.11530.Google Scholar
Lee, U., Neiner, C. & Mathis, S. 2014 Angular momentum transport by stochastically excited oscillations in rapidly rotating massive stars. Mon. Not. R. Astron. Soc. 443, 15151522. arXiv:1404.5133.Google Scholar
Maeder, A. 2009 Physics, Formation and Evolution of Rotating Stars. Springer.Google Scholar
Maeder, A. & Meynet, G. 2000 Stellar evolution with rotation. VI. The Eddington and Omega-limits, the rotational mass loss for OB and LBV stars. Astron. Astrophys. 361, 159166. arXiv:astro-ph/0006405.Google Scholar
Maeder, A. & Zahn, J. P. 1998 Stellar evolution with rotation. III. Meridional circulation with MU-gradients and non-stationarity. Astron. Astrophys. 334, 10001006.Google Scholar
Marcotte, F., Dormy, E. & Soward, A. 2016 On the equatorial Ekman layer. J. Fluid Mech. 803, 395435. arXiv:1602.08647.Google Scholar
Meynet, G. & Maeder, A. 1997 Stellar evolution with rotation. I. The computational method and the inhibiting effect of the $\mu$-gradient. Astron. Astrophys. 321, 465476.Google Scholar
Moore, D. & Saffman, P. 1968 The rise of a body through a rotating fluid in a container of finite length. J. Fluid Mech. 31, 635642.Google Scholar
Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P. & Timmes, F. 2011 Modules for experiments in stellar astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3.CrossRefGoogle Scholar
Pelupessy, I., Lamers, H. J. G. L. M. & Vink, J. S. 2000 The radiation driven winds of rotating B[e] supergiants. Astron. Astrophys. 359, 695706. arXiv:astro-ph/0005300.Google Scholar
Prat, V., Guilet, J., Viallet, M. & Müller, E. 2016 Shear mixing in stellar radiative zones. II. Robustness of numerical simulations. Astron. Astrophys. 592, A59. arXiv:1512.04223.CrossRefGoogle Scholar
Prat, V. & Lignières, F. 2013 Turbulent transport in radiative zones of stars. Astron. Astrophys. 551, L3. arXiv:1301.4151.CrossRefGoogle Scholar
Prat, V. & Lignières, F. 2014 Shear mixing in stellar radiative zones. I. Effect of thermal diffusion and chemical stratification. Astron. Astrophys. 566, A110. arXiv:1404.6199.Google Scholar
Proudman, J. 1916 On the motion of solids in a liquid possessing vorticity. Proc. R. S. Lond. A 92, 408424.Google Scholar
Proudman, I. 1956 The almost-rigid rotation of viscous fluid between concentric spheres. J. Fluid Mech. 1, 505516.CrossRefGoogle Scholar
Puls, J., Springmann, U. & Lennon, M. 2000 Radiation driven winds of hot luminous stars. XIV. Line statistics and radiative driving. Astron. Astrophys. Suppl. Ser. 141, 2364.Google Scholar
Puls, J., Vink, J. S. & Najarro, F. 2008 Mass loss from hot massive stars. Astron. Astrophys. Rev. 16, 209325. arXiv:0811.0487.CrossRefGoogle Scholar
Raynaud, R., Rieutord, M., Petitdemange, L., Gastine, T. & Putigny, B. 2018 Gravity darkening in late-type stars. I. The Coriolis effect. Astron. Astrophys. 609, A124.CrossRefGoogle Scholar
Raze, G., Lignières, F. & Mimoun, D. 2017 Modéliser la Rotation Différentielle dans les Zones Radiatives d’Étoile. Available at: http://userpages.irap.omp.eu/ flignieres/graze.pdf.Google Scholar
Rieutord, M. 1987 Linear theory of rotating fluids using spherical harmonics. I. Steady flows. Geophys. Astrophys. Fluid Dyn. 39, 163.Google Scholar
Rieutord, M. 2006 The dynamics of the radiative envelope of rapidly rotating stars. I. A spherical Boussinesq model. Astron. Astrophys. 451, 10251036.Google Scholar
Rieutord, M. & Beth, A. 2014 Dynamics of the radiative envelope of rapidly rotating stars: effects of spin-down driven by mass loss. Astron. Astrophys. 570, A42.Google Scholar
Rieutord, M. & Dintrans, B. 2002 More about the anelastic and subseismic approximations for low-frequency modes in stars. Mon. Not. R. Astron. Soc. 337, 10871090.CrossRefGoogle Scholar
Rieutord, M., Espinosa Lara, F. & Putigny, B. 2016 An algorithm for computing the 2D structure of fast rotating stars. J. Comput. Phys. 318, 277304. arXiv:1605.02359.CrossRefGoogle Scholar
Rieutord, M., Triana, S. A., Zimmerman, D. S. & Lathrop, D. P. 2012 Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86 (2), 026304.Google Scholar
Rieutord, M. & Valdettaro, L. 1997 Inertial waves in a rotating spherical shell. J. Fluid Mech. 341, 7799.CrossRefGoogle Scholar
Roberts, P. & Stewartson, K. 1963 On the stability of a Maclaurin spheroid of small viscosity. Astrophys. J. 137, 777790.CrossRefGoogle Scholar
Rogers, T. M., Lin, D. N. C., McElwaine, J. N. & Lau, H. H. B. 2013 Internal gravity waves in massive stars: angular momentum transport. Astrophys. J. 772, 21.Google Scholar
Stewartson, K. 1966 On almost rigid rotations. Part 2. J. Fluid Mech. 26, 131144.CrossRefGoogle Scholar
Taylor, G. I. 1921 Experiments with rotating fluids. Proc. R. Soc. Lond. A 100, 114121.Google Scholar
Zahn, J.-P. 1974 Rotational instabilities and stellar evolution. In IAU Symp. 59: Stellar Instability and Evolution, pp. 185–194.Google Scholar
Zahn, J.-P. 1992 Circulation and turbulence in rotating stars. Astron. Astrophys. 265, 115132.Google Scholar
Zikanov, O. Y. 1996 Symmetry-breaking bifurcations in spherical Couette flow. J. Fluid Mech. 310, 293324.CrossRefGoogle Scholar