Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T16:31:22.511Z Has data issue: false hasContentIssue false

Steady base states for non-Newtonian granular hydrodynamics

Published online by Cambridge University Press:  19 February 2013

Francisco Vega Reyes*
Affiliation:
Departamento de Física, Universidad de Extremadura, 06071 Badajoz, Spain
Andrés Santos
Affiliation:
Departamento de Física, Universidad de Extremadura, 06071 Badajoz, Spain
Vicente Garzó
Affiliation:
Departamento de Física, Universidad de Extremadura, 06071 Badajoz, Spain
*
Email address for correspondence: [email protected]

Abstract

We study in this work steady laminar flows in a low-density granular gas modelled as a system of identical smooth hard spheres that collide inelastically. The system is excited by shear and temperature sources at the boundaries, which consist of two infinite parallel walls. Thus, the geometry of the system is the same that yields the planar Fourier and Couette flows in standard gases. We show that it is possible to describe the steady granular flows in this system, even at large inelasticities, by means of a (non-Newtonian) hydrodynamic approach. All five types of Couette–Fourier granular flows are systematically described, identifying the different types of hydrodynamic profiles. Excellent agreement is found between our classification of flows and simulation results. Also, we obtain the corresponding nonlinear transport coefficients by following three independent and complementary methods: (i) an analytical solution obtained from Grad’s 13-moment method applied to the inelastic Boltzmann equation; (ii) a numerical solution of the inelastic Boltzmann equation obtained by means of the direct simulation Monte Carlo method; and (iii) event-driven molecular dynamics simulations. We find that, while Grad’s theory does not describe quantitatively well all transport coefficients, the three procedures yield the same general classification of planar Couette–Fourier flows for the granular gas.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, R. K., Yun, K.-Y. & Balakrishnan, R. 2001 Beyond Navier–Stokes: Burnett equations for flows in the continuum transition regime. Phys. Fluids 13, 30613085.CrossRefGoogle Scholar
Alam, M., Arakeri, V. H., Nott, P. R., Goddard, J. D. & Herrmann, H. J. 2005 Instability-induced ordering, universal unfolding and the role of gravity in granular Couette flow. J. Fluid Mech. 523, 277306.CrossRefGoogle Scholar
Alam, M. & Chikkadi, V. K. 2010 Velocity distribution function and correlations in a granular Poiseuille flow. J. Fluid Mech. 653, 175219.Google Scholar
Alam, M. & Luding, S. 2003 Rheology of bidisperse granular mixtures via event-driven simulations. J. Fluid Mech. 476, 69103.CrossRefGoogle Scholar
Alam, M. & Nott, P. 1998 Stability of plane Couette flow of a granular material. J. Fluid Mech. 377, 99136.CrossRefGoogle Scholar
Alam, M., Shukla, P. & Luding, S. 2008 Universality of shear-banding instability and crystallization in sheared granular fluid. J. Fluid Mech. 615, 293321.Google Scholar
Alexander, F. J. & Garcia, A. L. 1997 The direct simulation Monte Carlo method. Comput. Phys. 11, 588593.CrossRefGoogle Scholar
Aranson, I. S. & Tsimring, L. S. 2006 Patterns and collective behaviour in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641692.Google Scholar
Astillero, A. & Santos, A. 2005 Uniform shear flow in dissipative gases: computer simulations of inelastic hard spheres and frictional elastic hard spheres. Phys. Rev. E 72, 031309.Google Scholar
Brey, J. J. & Cubero, D. 1998 Steady state of a fluidized granular medium betwen two walls at the same temperature. Phys. Rev. E 57, 20192029.Google Scholar
Brey, J. J. & Cubero, D. 2001 Hydrodynamic transport coefficients of granular gases. In Granular Gases (ed. Pöschel, T. & Luding, S.). Lectures Notes in Physics , vol. 564. pp. 5978. Springer.Google Scholar
Brey, J. J., Cubero, D., Moreno, F. & Ruiz-Montero, M. J. 2001 Fourier state of a fluidized granular gas. Europhys. Lett. 53, 432437.CrossRefGoogle Scholar
Brey, J. J., Dufty, J. W., Kim, C. S. & Santos, A. 1998 Hydrodynamics for granular flow at low density. Phys. Rev. E 58, 46384653.CrossRefGoogle Scholar
Brey, J. J., Khalil, N. & Dufty, J. W 2011 Thermal segregation beyond Navier–Stokes. New J. Phys. 13, 055019.CrossRefGoogle Scholar
Brey, J. J., Khalil, N. & Dufty, J. W 2012 Thermal segregation of intruders in the Fourier state of a granular gas. Phys. Rev. E 85, 021307.Google Scholar
Brey, J. J., Khalil, N. & Ruiz-Montero, M. J. 2009 The Fourier state of a dilute granular gas described by the inelastic Boltzmann equation. J. Stat. Mech. P08019.Google Scholar
Brey, J. J., Ruiz-Montero, M. J. & Moreno, F. 2000 Boundary conditions and normal state for a vibrated granular fluid. Phys. Rev. E 62, 53395346.CrossRefGoogle ScholarPubMed
Brilliantov, N. V. & Pöschel, T. 2004 Kinetic Theory of Granular Gases. Oxford University Press.Google Scholar
Brilliantov, N. V., Pöschel, T., Kranz, W. T. & Zippelius, A. 2007 Translations and rotations are correlated in granular gases. Phys. Rev. Lett. 98, 128001.Google Scholar
Burnett, D. 1935 The distribution of velocities in a slightly non-uniform gas. Proc. Lond. Math. Soc. 39, 385430.Google Scholar
Campbell, C. S. 1989 The stress tensor for simple shear flows of a granular material. J. Fluid Mech. 203, 449473.CrossRefGoogle Scholar
Cercignani, C. 1988 The Boltzmann Equation and its Applications. Springer.Google Scholar
Chapman, C. & Cowling, T. G. 1970 The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press.Google Scholar
Dahl, S. R., Hrenya, C. M., Garzó, V. & Dufty, J. W. 2002 Kinetic temperatures for a granular mixture. Phys. Rev. E 66, 041301.Google Scholar
Galvin, J. E., Hrenya, C. M. & Wildman, R. D. 2007 On the role of the Knudsen layer in rapid granular flows. J. Fluid Mech. 585, 7392.Google Scholar
Garzó, V. & Montanero, J. M. 2002 Transport coefficients of a heated granular gas. Physica A 313, 336356.CrossRefGoogle Scholar
Garzó, V. & Santos, A. 2003 Kinetic Theory of Gases in Shear Flows. Nonlinear Transport. Kluwer.Google Scholar
Garzó, V., Santos, A. & Montanero, J. M. 2007 Modified Sonine approximation for the Navier–Stokes transport coefficients of a granular gas. Physica A 376, 94107.Google Scholar
Garzó, V. & Vega Reyes, F. 2009 Mass transport of impurities in a moderately dense granular gas. Phys. Rev. E 79, 041303.Google Scholar
Garzó, V. & Vega Reyes, F. 2010 Segregation by thermal diffusion in granular shear flows. J. Stat. Mech. P07024.Google Scholar
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267293.Google Scholar
Goldhirsch, I. & Zanetti, G. 1993 Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 16191622.Google Scholar
Grad, H. 1949 On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths 2, 331407.Google Scholar
Grossman, E. L., Zhou, T. & Ben-Naim, E. 1997 Towards granular hydrodynamics in two dimensions. Phys. Rev. E 55, 4200.Google Scholar
Haff, P. K. 1983 Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401430.Google Scholar
Herdegen, N. & Hess, S. 1982 Nonlinear flow behaviour of the Boltzmann gas. Physica A 115, 281299.Google Scholar
Hilbert, D. 1912 Begründung der kinetischen Gastheorie. Math. Ann. 72, 562577.Google Scholar
Hopkins, M. A. & Louge, M. Y. 1991 Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids A 3, 4757.Google Scholar
Huang, K. 1987 Statistical Mechanics. John Wiley & Sons.Google Scholar
Jenkins, J. T. & Savage, S. B. 1983 A theory for the rapid flow of identical, smooth, nearly elastic, spherical spheres. J. Fluid Mech. 130, 187202.Google Scholar
Jenkins, J. T. & Yoon, D. K. 2002 Segregation in binary mixtures under gravity. Phys. Rev. Lett. 88, 194301.Google Scholar
Khain, E. & Meerson, B. 2003 Onset of thermal convection in a horizontal layer of granular gas. Phys. Rev. E 67, 021306.Google Scholar
Kolvin, I., Livne, E. & Meerson, B. 2010 Navier–Stokes hydrodynamics of thermal collapse in a freely cooling granular gas. Phys. Rev. E 82, 021302.Google Scholar
Kremer, G. M. 2010 An Introduction to the Boltzmann Equation and Transport Processes in Gases. Springer.Google Scholar
Lees, A. W. & Edwards, S. F. 1972 The computer study of transport processes under extreme conditions. J. Phys. C 5, 19211929.Google Scholar
Lobkovsky, A. E., Vega Reyes, F. & Urbach, J. S. 2009 The effects of forcing and dissipation on phase transitions in thin granular layers. Eur. Phys. J. Spec. Top. 179, 113.Google Scholar
Lun, C. K. K. 1996 Granular dynamics of inelastic spheres in Couette flow. Phys. Fluids 8, 28682883.Google Scholar
Lutsko, J., Brey, J. J. & Dufty, J. W. 2002 Diffusion in a granular fluid. II. Simulation. Phys. Rev. E 65, 051304.Google Scholar
McNamara, S. & Luding, S. 1998 Energy non-equipartition in systems of inelastic, rough spheres. Phys. Rev. E 58, 22472250.Google Scholar
Montanero, J. M., Alaoui, M., Santos, A. & Garzó, V. 1994 Monte Carlo simulation of the Boltzmann equation for steady Fourier flow. Phys. Rev. A 49, 367375.Google Scholar
Montanero, J. M., Garzó, V., Alam, M. & Luding, S. 2006 Rheology of two- and three-dimensional granular mixtures under uniform shear flow: Enskog kinetic theory versus molecular dynamics simulations. Granul. Matt. 8, 103115.Google Scholar
Montanero, J. M., López de Haro, M., Garzó, V. & Santos, A. 1998 Strong shock waves in a dense gas: Burnett theory versus Monte Carlo simulation. Phys. Rev. E 58, 73197324.Google Scholar
Montanero, J. M., López de Haro, M., Santos, A. & Garzó, V. 1999 Simple and accurate theory for strong shock waves in a dense hard-sphere fluid. Phys. Rev. E 60, 75927595.CrossRefGoogle Scholar
Nott, P. R. 2011 Boundary conditions at a rigid wall for rough granular gases. J. Fluid Mech. 678, 179202.Google Scholar
Nott, P. R., Alam, M., Agrawal, K., Jackson, R. & Sundaresan, S. 1999 The effect of boundaries on the plane Couette flow of granular materials: a bifurcation analysis. J. Fluid Mech. 397, 203229.CrossRefGoogle Scholar
Pagonabarraga, I., Trizac, E., van Noije, T. P. C. & Ernst, M. H. 2002 Randomly driven granular fluids: collisional statistics and short scale structure. Phys. Rev. E 65, 011303.Google Scholar
Prevost, A., Egolf, D. E. & Urbach, J. S. 2002 Forcing and velocity correlations in a vibrated granular monolayer. Phys. Rev. Lett. 89, 084301.CrossRefGoogle Scholar
Santos, A., Garzó, V. & Dufty, J. W. 2004 Inherent rheology of a granular fluid in uniform shear flow. Phys. Rev. E 69, 061303.CrossRefGoogle ScholarPubMed
Santos, A., Garzó, V. & Vega Reyes, F. 2009 An exact solution of the inelastic Boltzmann equation for the Couette flow with uniform heat flux. Eur. Phys. J. Spec. Top. 179, 141156.Google Scholar
Santos, A. & Tij, M. 2006 Gravity-driven Poiseuille flow in dilute gases. Elastic and inelastic collisions. In Modelling and Numerics of Kinetic Dissipative Systems (ed. Pareschi, L., Russo, G. & Toscani, G.). pp. 5367. Nova Science.Google Scholar
Schlamp, S. & Hathorn, B. C. 2007 Incomplete molecular chaos within dense-fluid shock waves. Phys. Rev. E 76, 026314.Google Scholar
Sela, N. & Goldhirsch, I. 1998 Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. J. Fluid Mech. 361, 4174.Google Scholar
Soto, R. & Mareschal, M. 2001 Statistical mechanics of fluidized granular media: short-range velocity correlations. Phys. Rev. E 63, 041303.Google Scholar
Soto, R., Piasecki, J. & Mareschal, M. 2001 Precollisional velocity correlations in a hard-disk fluid with dissipative collisions. Phys. Rev. E 64, 031306.Google Scholar
Tij, M. & Santos, A. 2004 Poiseuille flow in a heated granular gas. J. Stat. Phys. 117, 901928.Google Scholar
Tij, M., Tahiri, E. E., Montanero, J. M., Garzó, V., Santos, A. & Dufty, J. W. 2001 Nonlinear Couette flow in a low density granular gas. J. Stat. Phys. 103, 10351068.Google Scholar
Tsao, H.-K. & Koch, D. L. 1995 Simple shear flows of dilute gas–solid suspensions. J. Fluid Mech. 296, 211245.Google Scholar
Vega Reyes, F., Garzó, V. & Santos, A. 2011a Class of dilute granular Couette flows with uniform heat flux. Phys. Rev. E 83, 021302.Google Scholar
Vega Reyes, F., Santos, A. & Garzó, V. 2010 Non-Newtonian granular hydrodynamics. What do the inelastic simple shear flow and the elastic Fourier flow have in common? Phys. Rev. Lett. 104, 028001.Google Scholar
Vega Reyes, F., Santos, A. & Garzó, V. 2011b Computer simulations of an impurity in a granular gas under planar Couette flow. J. Stat. Mech. P07005.Google Scholar
Vega Reyes, F. & Urbach, J. S. 2009 Steady base states for Navier–Stokes granular hydrodynamics with boundary heating and shear. J. Fluid Mech. 636, 279293.CrossRefGoogle Scholar
Wang, C.-W., Jackson, R. & Sundaresan, S. 1996 Stability of bounded rapid shear flows of a granular material. J. Fluid Mech. 308, 3162.Google Scholar